
David C James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3207990/publications.pdf Version: 2024-02-01

DAVID C LAMES

#	Article	IF	CITATIONS
1	Bioinformatic Design of Dendritic Cell-Specific Synthetic Promoters. ACS Synthetic Biology, 2022, , .	3.8	3
2	High-throughput multiplex analysis of mAb aggregates and charge variants by automated two-dimensional size exclusion-cation exchange chromatography coupled to mass spectrometry. Journal of Chromatography A, 2022, 1670, 462944.	3.7	11
3	Engineering of the CMV promoter for controlled expression of recombinant genes in HEK293 cells. Biotechnology Journal, 2022, 17, e2200062.	3.5	6
4	Production of trimeric SARSâ€CoVâ€2 spike protein by CHO cells for serological COVIDâ€19 testing. Biotechnology and Bioengineering, 2021, 118, 1013-1021.	3.3	33
5	Design of synthetic promoters for controlled expression of therapeutic genes in retinal pigment epithelial cells. Biotechnology and Bioengineering, 2021, 118, 2001-2015.	3.3	8
6	Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synthetic Biology, 2021, 10, 1155-1165.	3.8	13
7	ACE2-Independent Interaction of SARS-CoV-2 Spike Protein with Human Epithelial Cells Is Inhibited by Unfractionated Heparin. Cells, 2021, 10, 1419.	4.1	39
8	Resveratrol addition to Chinese hamster ovary cell culture media: The effect on cell growth, monoclonal antibody synthesis, and its chemical modification. Biotechnology Progress, 2020, 36, e2940.	2.6	9
9	Cell function profiling to assess clone stability. Biotechnology and Bioengineering, 2020, 117, 2295-2299.	3.3	5
10	The use of catechins in Chinese hamster ovary cell media for the improvement of monoclonal antibody yields and a reduction of acidic species. Biotechnology Progress, 2020, 36, e2980.	2.6	9
11	A platform for context-specific genetic engineering of recombinant protein production by CHO cells. Journal of Biotechnology, 2020, 312, 11-22.	3.8	14
12	CHO genome mining for synthetic promoter design. Journal of Biotechnology, 2019, 294, 1-13.	3.8	15
13	Comparison of dataâ€acquisition methods for the identification and quantification of histone postâ€translational modifications on a Q Exactive HF hybrid quadrupole Orbitrap mass spectrometer. Rapid Communications in Mass Spectrometry, 2019, 33, 897-906.	1.5	13
14	Screening Naturally Occurring Phenolic Antioxidants for Their Suitability as Additives to CHO Cell Culture Media Used to Produce Monoclonal Antibodies. Antioxidants, 2019, 8, 159.	5.1	11
15	Whole synthetic pathway engineering of recombinant protein production. Biotechnology and Bioengineering, 2019, 116, 375-387.	3.3	19
16	Highly sensitive detection of mutations in CHO cell recombinant DNA using multiâ€parallel single molecule realâ€ŧime DNA sequencing. Biotechnology and Bioengineering, 2018, 115, 1485-1498.	3.3	12
17	Transcriptomeâ€Based Identification of the Optimal Reference CHO Genes for Normalisation of qPCR Data. Biotechnology Journal, 2018, 13, 1700259.	3.5	25
18	Metabolic phenotyping of CHO cells varying in cellular biomass accumulation and maintenance during fedâ€batch culture. Biotechnology and Bioengineering, 2018, 115, 645-660.	3.3	15

DAVID C JAMES

#	Article	IF	CITATIONS
19	Control of amino acid transport into Chinese hamster ovary cells. Biotechnology and Bioengineering, 2018, 115, 2908-2929.	3.3	12
20	Constructing Strong Cell Type-Specific Promoters Through Informed Design. Methods in Molecular Biology, 2017, 1651, 131-145.	0.9	4
21	High-throughput quantitation of Fc-containing recombinant proteins in cell culture supernatant by fluorescence polarization spectroscopy. Analytical Biochemistry, 2017, 534, 49-55.	2.4	7
22	In silico design of context-responsive mammalian promoters with user-defined functionality. Nucleic Acids Research, 2017, 45, 10906-10919.	14.5	29
23	Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnology Advances, 2016, 34, 492-503.	11.7	29
24	Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells. Applied Biochemistry and Biotechnology, 2016, 178, 1286-1302.	2.9	18
25	Integrated cell and process engineering for improved transient production of a "difficultâ€ŧoâ€express" fusion protein by CHO cells. Biotechnology and Bioengineering, 2015, 112, 2527-2542.	3.3	56
26	NFâ€ÎºB, CRE and YY1 elements are key functional regulators of CMV promoterâ€driven transient gene expression in CHO cells. Biotechnology Journal, 2015, 10, 1019-1028.	3.5	44
27	Modelâ€ <scp>d</scp> irected engineering of "difficultâ€ŧoâ€ <scp>e</scp> xpress―monoclonal antibody production by Chinese hamster ovary cells. Biotechnology and Bioengineering, 2014, 111, 372-385.	3.3	79
28	Synthetic promoters for CHO cell engineering. Biotechnology and Bioengineering, 2014, 111, 1638-1647.	3.3	60
29	Predicting the expression of recombinant monoclonal antibodies in Chinese hamster ovary cells based on sequence features of the CDR3 domain. Biotechnology Progress, 2014, 30, 188-197.	2.6	21
30	A mechanistic dissection of polyethylenimine mediated transfection of CHO cells: To enhance the efficiency of recombinant DNA utilization. Biotechnology Progress, 2014, 30, 1161-1170.	2.6	16
31	Block decoys: Transcription-factor decoys designed for in vitro gene regulation studies. Analytical Biochemistry, 2013, 443, 205-210.	2.4	13
32	CHO cell line specific prediction and control of recombinant monoclonal antibody <i>N</i> â€glycosylation. Biotechnology and Bioengineering, 2013, 110, 2970-2983.	3.3	84
33	Functional heterogeneity and heritability in CHO cell populations. Biotechnology and Bioengineering, 2013, 110, 260-274.	3.3	88
34	Cell line specific control of polyethylenimineâ€mediated transient transfection optimized with "Design of experiments―methodology. Biotechnology Progress, 2012, 28, 179-187.	2.6	22
35	Impact of gene vector design on the control of recombinant monoclonal antibody production by chinese hamster ovary cells. Biotechnology Progress, 2011, 27, 1689-1699.	2.6	31
36	An empirical modeling platform to evaluate the relative control discrete CHO cell synthetic processes exert over recombinant monoclonal antibody production process titer. Biotechnology and Bioengineering, 2011, 108, 2193-2204.	3.3	19

David C James

#	Article	IF	CITATIONS
37	A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnology and Bioengineering, 2011, 108, 2434-2446.	3.3	174
38	Cell lineâ€ s pecific control of recombinant monoclonal antibody production by CHO cells. Biotechnology and Bioengineering, 2010, 106, 938-951.	3.3	90
39	Engineering Mammalian Cells for Recombinant Monoclonal Antibody Production. Cell Engineering, 2009, , 153-173.	0.4	5
40	On the Optimal Ratio of Heavy to Light Chain Genes for Efficient Recombinant Antibody Production by CHO Cells. Biotechnology Progress, 2008, 21, 122-133.	2.6	183
41	Systems biotechnology of mammalian cell factories. Briefings in Functional Genomics & Proteomics, 2008, 7, 95-110.	3.8	74
42	Dynamic analysis of GS-NSO cells producing a recombinant monoclonal antibody during fed-batch culture. Biotechnology and Bioengineering, 2007, 97, 410-424.	3.3	45
43	Control of Culture Environment for Improved Polyethylenimine-Mediated Transient Production of Recombinant Monoclonal Antibodies by CHO Cells. Biotechnology Progress, 2006, 22, 753-762.	2.6	93
44	Functional proteomic analysis of GS-NSO murine myeloma cell lines with varying recombinant monoclonal antibody production rate. Biotechnology and Bioengineering, 2006, 94, 830-841.	3.3	76
45	Control of Recombinant Monoclonal Antibody Effector Functions by Fc N-Glycan Remodeling in Vitro. Biotechnology Progress, 2005, 21, 1644-1652.	2.6	341
46	Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature?. Biotechnology and Bioengineering, 2005, 91, 180-189.	3.3	160
47	Metabolic control of recombinant monoclonal antibodyN-glycosylation in GS-NSO cells. Biotechnology and Bioengineering, 2001, 75, 239-251.	3.3	114
48	Metabolic control of recombinant proteinN-glycan processing in NSO and CHO cells. Biotechnology and Bioengineering, 2001, 73, 188-202.	3.3	174
49	Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Research, 0, 6, 220.	1.8	6
50	Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Research, 0, 6, 220.	1.8	1
51	Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Research, 0, 6, 220.	1.8	4