List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3207695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Diffusion with Decaying Time-Dependent Diffusivity: Formulations and Approximate Solutions Pertinent to Diffusion in Concretes. Studies in Systems, Decision and Control, 2022, , 1-44.	1.0	0
2	Benefits from the use of wire-coil inserts in water transitional and low turbulent flow: The influence of the wire-coil pitch. Thermal Science, 2022, 26, 3597-3604.	1.1	0
3	Prony's series and modern fractional calculus. , 2022, , 187-200.		3
4	Integral-balance method with transmuted profiles: Concept, examples, and emerging problems. Journal of Computational and Applied Mathematics, 2022, 416, 114547.	2.0	1
5	Semi-derivative integral method to transient heat conduction: Time-dependent (power-law) temperature boundary conditions. Thermal Science, 2021, 25, 3557-3568.	1.1	2
6	Response to "Comments on "New insight into the definitions of the Bejan numberâ€â€• International Communications in Heat and Mass Transfer, 2021, 124, 105277.	5.6	0
7	Critical review of the definitions of the Bejan number - first law of thermodynamics. International Communications in Heat and Mass Transfer, 2021, 124, 105113.	5.6	6
8	Magnetic field diffusion in ferromagnetic materials: fractional calculus approaches. International Journal of Optimization and Control: Theories and Applications, 2021, 11, 1-15.	1.7	4
9	Semi-derivative integral method to transient heat conduction time-dependent heat flux boundary conditions. Thermal Science, 2021, 25, 303-308.	1.1	0
10	On the p(x) approximation in the non-isothermal reaction kinetics by a generalized exponential integral the concept. Thermal Science, 2021, 25, 321-326.	1.1	1
11	The Craft of Fractional Modelling in Science and Engineering: II and III. Fractal and Fractional, 2021, 5, 281.	3.3	1
12	Editorial: Fractional differential and integral operators with non-singular and non-local kernel with application to nonlinear dynamical systems. Chaos, Solitons and Fractals, 2020, 132, 109493.	5.1	21
13	New insight into the definitions of the Bejan number. International Communications in Heat and Mass Transfer, 2020, 116, 104637.	5.6	6
14	Non-linear heat conduction with ramped surface heating ramp surface heating and approximate solution. Thermal Science, 2020, 24, 377-389.	1.1	6
15	Effects of different fuel supply types on combustion characteristics behind group of V-gutter flame holders: Experimental and numerical study. Thermal Science, 2020, 24, 379-391.	1.1	4
16	Preface on "New trends of numerical and analytical methods". Discrete and Continuous Dynamical Systems - Series S, 2020, 13, âº-â±.	1.1	0
17	Non-linear heat conduction with ramped surface heating ramp surface heating and approximate solution. Thermal Science, 2020, 24, 377-389.	1.1	0
18	A new closed-form approximate solution to diffusion with quadratic Fujita's non-linearity: the case of diffusion controlled sorption kinetics relevant to rectangular adsorption isotherms. Heat and Mass Transfer, 2019, 55, 261-279.	2.1	3

#	Article	IF	CITATIONS
19	Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels. European Physical Journal Plus, 2019, 134, 1.	2.6	38
20	Response functions in linear viscoelastic constitutive equations and related fractional operators. Mathematical Modelling of Natural Phenomena, 2019, 14, 305.	2.4	54
21	On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept: The Diffusion Equation Formulation. Studies in Systems, Decision and Control, 2019, , 175-193.	1.0	25
22	Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches. Frontiers in Physics, 2019, 7, .	2.1	38
23	A Transient Flow of a Non-Newtonian Fluid Modelled by a Mixed Time-Space Derivative: An Improved Integral-Balance Approach. Advances in Dynamics, Patterns, Cognition, 2019, , 153-174.	0.3	13
24	Fourth-order fractional diffusion model of thermal grooving: integral approach to approximate closed form solution of the Mullins model. Mathematical Modelling of Natural Phenomena, 2018, 13, 6.	2.4	18
25	Electrical Circuits of Non-integer Order: Introduction to an Emerging Interdisciplinary Area with Examples. Lecture Notes in Electrical Engineering, 2018, , 251-273.	0.4	8
26	The Craft of Fractional Modeling in Science and Engineering 2017. Fractal and Fractional, 2018, 2, 16.	3.3	6
27	Integral-Balance Solution to Nonlinear Subdiffusion Equation. Current Developments in Mathematical Sciences, 2018, , 70-105.	0.3	4
28	Derivatives with Non-Singular Kernels from the Caputo-Fabrizio Definition and Beyond: Appraising Analysis with Emphasis on Diffusion Models. Current Developments in Mathematical Sciences, 2018, , 269-341.	0.3	32
29	The heat radiation diffusion equation: Explicit analytical solutions by improved integral-balance method. Thermal Science, 2018, 22, 777-788.	1.1	15
30	Linear Viscoelastic Responses: The Prony Decomposition Naturally Leads Into the Caputo-Fabrizio Fractional Operator. Frontiers in Physics, 2018, 6, .	2.1	23
31	On the Integral-Balance Solvability of the Nonlinear Mullins Model. Springer Proceedings in Mathematics and Statistics, 2018, , 53-66.	0.2	1
32	Influence of fiberglass mesh on flammability of EPS used as insulation of buildings. Thermal Science, 2018, 22, 1025-1036.	1.1	0
33	Double integral-balance method to the fractional subdiffusion equation: Approximate solutions, optimization problems to be resolved and numerical simulations. JVC/Journal of Vibration and Control, 2017, 23, 2795-2818.	2.6	25
34	On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity. Heat and Mass Transfer, 2017, 53, 177-204.	2.1	20
35	Transient Space-fractional Diffusion with a Power-law Superdiffusivity: Approximate Integral-balance Approach. Fundamenta Informaticae, 2017, 151, 371-388.	0.4	9
36	Identification of the heat transfer coefficient in the two-dimensional model of binary alloy solidification. Heat and Mass Transfer, 2017, 53, 1657-1666.	2.1	10

#	Article	IF	CITATIONS
37	Space-Fractional Diffusion with a Potential Power-Law Coefi¬cient: Transient Approximate Solution. Progress in Fractional Differentiation and Applications, 2017, 3, 19-39.	0.6	17
38	Derivation of the Fractional Dodson Equation and Beyond: Transient Diffusion With a Non-Singular Memory and Exponentially Fading-Out Diffusivity. Progress in Fractional Differentiation and Applications, 2017, 3, 255-270.	0.6	33
39	The non-linear Dodson diffusion equation: Approximate solutions and beyond with formalistic fractionalization. , 2017, 01, 1-17.		24
40	The melt/shrink effect of low density thermoplastics insulates: Cone calorimeter tests. Thermal Science, 2017, 21, 2177-2187.	1.1	1
41	An approximate solution to the transient space-fractional diffusion equation: Integral-balance approach, optimization problems and analyzes. Thermal Science, 2017, 21, 309-321.	1.1	6
42	Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey`s Kernel and analytical solutions. Thermal Science, 2017, 21, 827-839.	1.1	87
43	Subdiffusion model with time-dependent diffusion coefficient: Integral-balance solution and analysis. Thermal Science, 2017, 21, 69-80.	1.1	12
44	Multiple integral-balance method: Basic idea and an example with Mullin's model of thermal grooving. Thermal Science, 2017, 21, 1555-1560.	1.1	21
45	Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey's Kernel to the Caputo-Fabrizio time-fractional derivative. Thermal Science, 2016, 20, 757-762.	1.1	230
46	Geological evolution of the marine selenium cycle: Insights from the bulk shale Î'82/76Se record and isotope mass balance modeling. Earth and Planetary Science Letters, 2016, 441, 178-187.	4.4	23
47	Special issue on advances in fractional dynamics in mechanical engineering. Advances in Mechanical Engineering, 2016, 8, 168781401665409.	1.6	3
48	Glycerol bioconversion in unconventional magnetically assisted bioreactor seeking whole cell biocatalyst (intracellular lipase) production. Chemical Engineering Research and Design, 2016, 111, 243-252.	5.6	9
49	A unified nonlinear fractional equation of the diffusion-controlled surfactant adsorption: Reappraisal and new solution of the Ward–Tordai problem. Journal of King Saud University - Science, 2016, 28, 7-13.	3.5	10
50	Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat and Mass Transfer, 2016, 52, 635-655.	2.1	33
51	Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dynamics, 2016, 84, 3-7.	5.2	70
52	An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions. Thermal Science, 2016, 20, 1867-1878.	1.1	2
53	Approximate Solutions to Time-fractional Models by Integral-balance Approach. , 2015, , 78-109.		12
54	An approximate analytical (integral-balance) solution to a nonlinear heat diffusion equation. Thermal Science, 2015, 19, 723-733.	1.1	26

#	Article	IF	CITATIONS
55	Advances on Integrodifferential Equations and Transforms. Abstract and Applied Analysis, 2015, 2015, 1-2.	0.7	1
56	Diffusion models of heat and momentum with weakly singular kernels in the fading memories: How the integral-balance method can be applied?. Thermal Science, 2015, 19, 947-957.	1.1	17
57	Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation. Abstract and Applied Analysis, 2014, 2014, 1-10.	0.7	24
58	Silver recovery from spent photographic solutions by a magnetically assisted particle bed. Chemical Engineering and Processing: Process Intensification, 2013, 71, 83-96.	3.6	17
59	Redistribution of mass from a thin interlayer between two thick dissimilar media: 1-D diffusion problem with a non-local condition. Thermal Science, 2013, 17, 651-664.	1.1	4
60	A note on the integral approach to non-linear heat conduction with Jeffrey's fading memory. Thermal Science, 2013, 17, 733-737.	1.1	16
61	Thermal impedance estimations by semi-derivatives and semi-integrals: 1-D semi-infinite cases. Thermal Science, 2013, 17, 581-589.	1.1	11
62	Lifetime of a soluble solid particle in a stagnant medium: approximate analytical modelling involving fractional (half-time) derivatives. Polish Journal of Chemical Technology, 2013, 15, 74-77.	0.5	1
63	Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives. Thermal Science, 2012, 16, 623-627.	1.1	4
64	Straightforward dimensionless experimental formulae for flash point of binary mixtures of two flammable components. Thermal Science, 2012, 16, 969-985.	1.1	2
65	The heat-balance integral: 1. How to calibrate the parabolic profile?. Comptes Rendus - Mecanique, 2012, 340, 485-492.	2.1	15
66	The heat-balance integral: 2. Parabolic profile with a variable exponent: The concept, analysis and numerical experiments. Comptes Rendus - Mecanique, 2012, 340, 493-500.	2.1	12
67	Magnetic field assisted fluidization – a unified approach. Part 9. Mechanical processing with emphasis on separations. Reviews in Chemical Engineering, 2012, 28, .	4.4	12
68	Integral-balance solution to the Stokes' first problem of a viscoelastic generalized second grade fluid. Thermal Science, 2012, 16, 395-410.	1.1	19
69	Approximate solutions to fractional subdiffusion equations. European Physical Journal: Special Topics, 2011, 193, 229-243.	2.6	68
70	Time to flashover of a vinyl based lining material: Cone calorimeter experiments. Thermal Science, 2011, 15, 785-792.	1.1	7
71	Practical data correlation of flashpoints of binary mixtures by a reciprocal function: The concept and numerical examples. Thermal Science, 2011, 15, 905-910.	1.1	9
72	Starting radial subdiffusion from a central point through a diverging medium (a sphere): Heat-balance integral method. Thermal Science, 2011, 15, 5-20.	1.1	17

#	Article	IF	CITATIONS
73	Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. Reviews in Chemical Engineering, 2010, 26, .	4.4	41
74	Heat-balance integral to fractional (half-time) heat diffusion sub-model. Thermal Science, 2010, 14, 291-316.	1.1	59
75	Magnetic Field Assisted Fluidization - A Unified Approach Part 7. Mass Transfer: Chemical reactors, basic studies and practical implementations thereof. Reviews in Chemical Engineering, 2009, 25, 1-254.	4.4	28
76	Magnetically assisted gas–solid fluidization in a tapered vessel: Part I. Magnetization-LAST mode. Particuology, 2009, 7, 26-34.	3.6	17
77	Magnetically assisted gas–solid fluidization in a tapered vessel: Part II. Particuology, 2009, 7, 183-192.	3.6	9
78	The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises. Thermal Science, 2009, 13, 27-48.	1.1	49
79	Research note on a parabolic heat-balance integral method with unspecified exponent: An entropy generation approach in optimal profile determination. Thermal Science, 2009, 13, 49-59.	1.1	13
80	Magnetically assisted gas–solid fluidization in a tapered vessel: First report with observations and dimensional analysis. Canadian Journal of Chemical Engineering, 2008, 86, 470-492.	1.7	14
81	MAGNETIC FIELD ASSISTED FLUIDIZATION – A UNIFIED APPROACH Part 6. Topics of Gas-Liquid-Solid Fluidized Bed Hydrodynamics. Reviews in Chemical Engineering, 2007, 23, .	4.4	18
82	An overview of separation by magnetically stabilized beds: State-of-the-art and potential applications. Particuology: Science and Technology of Particles, 2007, 5, 11-18.	0.4	41
83	Magnetically stabilized bed dust filters—Analysis through variable length scale approach. Particuology: Science and Technology of Particles, 2007, 5, 121-129.	0.4	10
84	Magnetic field assisted fluidization—Dimensional analysis addressing the physical basis. Particuology: Science and Technology of Particles, 2007, 5, 103-110.	0.4	22
85	PHYSICAL AND MATHEMATICAL MODELS OF BIO-OIL COMBUSTION. , 2007, 17, 731-755.		5
86	An inverse Stefan problem relevant to boilover: Heat balance integral solutions and analysis. Thermal Science, 2007, 11, 141-160.	1.1	24
87	MAGNETIC FIELD ASSISTED FLUIDIZATION – A UNIFIED APPROACH PART 5. A HYDRODYNAMIC TREATISE ON LIQUID-SOLID FLUIDIZED BEDS. Reviews in Chemical Engineering, 2006, 22, .	4.4	32
88	Scaling of permeabilities and friction factors of homogeneously expanding gas-solids fluidized beds: Geldart's A powders and magnetically stabilized beds. Thermal Science, 2006, 10, 19-44.	1.1	10
89	External loop airlift with magnetically controlled liquid circulation. Powder Technology, 2005, 149, 180-194.	4.2	13
90	External-loop airlift magnetically stabilized bed—minimum stabilization and fluidization conditions. Particuology: Science and Technology of Particles, 2005, 3, 197-203.	0.4	4

#	Article	IF	CITATIONS
91	Friction factors and internal flow length scales of gas-solid magnetically stabilized beds in axial fields: Scaling and applications to bed-to-surface heat transfer. Thermal Science, 2005, 9, 73-98.	1.1	5
92	Accidental burning of a fuel layer on a waterbed: a scale analysis of the models predicting the pre-boilover time and tests to published data. International Journal of Thermal Sciences, 2004, 43, 221-239.	4.9	14
93	MAGNETIC FIELD ASSISTED FLUIDIZATION - A UNIFIED APPROACH Part 4. Moving Gas-Fluidized Beds. Reviews in Chemical Engineering, 2004, 20, .	4.4	14
94	MAGNETIC FIELD ASSISTED FLUIDIZATION – A UNIFIED APPROACH Part 2. Solids Batch Gas-Fluidized Beds: Versions and Rheology Reviews in Chemical Engineering, 2003, 19, 1-132.	4.4	34
95	MAGNETIC FIELD ASSISTED FLUIDIZATION – A UNIFIED APPROACH Part 3: Heat Transfer in Gas-Solid Fluidized Beds - a critical re-evaluation of the results. Reviews in Chemical Engineering, 2003, 19, .	4.4	21
96	MAGNETIC FIELD ASSISTED FLUIDIZATION – A UNIFIED APPROACH Part 1. Fundamentals and relevant hydrodynamics of gas-fluidized beds (batch solids mode). Reviews in Chemical Engineering, 2002, 18, .	4.4	56
97	MAGNETIC FIELD EFFECT ON HEAT TRANSFER BETWEEN GAS-FLUIDIZED FERROMAGNETIC PARTICLE BEDS AND IMMERSED SURFACES: RE-EXAMINATION OF THE RESULTS. , 2000, , .		1
98	Fluidization of ferromagnetic particles in a magnetic field Part 2: Field effects on preliminarily gas fluidized bed. Powder Technology, 1998, 97, 35-44.	4.2	56
99	Rheology of Magnetizable Powders Related to the Mechanics of Magnetically Stabilized Beds (gas-solid systems). , 1998, , 133-134.		0
100	Rheological behavior of fermentation broths in antibiotic industry. Applied Biochemistry and Biotechnology, 1997, 68, 187-206.	2.9	9
101	Fluidization of ferromagnetic particles in a magnetic field Part 1: The effect of field line orientation on bed stability. Powder Technology, 1996, 87, 59-66.	4.2	80
102	Performance of a magnetically stabilized bed reactor with immobilized yeast cells. Applied Biochemistry and Biotechnology, 1996, 59, 187-198.	2.9	49
103	Non-porous magnetic supports for cell immobilization. Journal of Bioscience and Bioengineering, 1991, 71, 114-117.	0.9	30
104	Fluidization of beds of ferromagnetic particles in a transverse magnetic field. Powder Technology, 1990, 62, 1-11.	4.2	45
105	Behaviour of fluidized beds of ferromagnetic particles in an axial magnetic field. Powder Technology, 1990, 61, 103-118.	4.2	58
106	On a new approach to distributions with variable transmuting parameter: The concept and examples with emerging problems. İletiÅŸim, Sosyoloji Ve Tarih AraÅYtırmaları Dergisi:, 0, , .	1.8	1