Dongfeng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/320732/publications.pdf

Version: 2024-02-01

1307594 1125743 21 161 7 13 citations g-index h-index papers 21 21 21 130 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Detecting the defects of warm-sprayed Ti-6Al-4V coating using Eddy current testing method. NDT and E International, 2022, 125, 102565.	3.7	9
2	Reducing the Temperature Coefficient of the Magnetic Sensor with FeCoSiB Amorphous Wire. , 2021, , 1-1.		0
3	Low-Temperature Properties of the Magnetic Sensor with Amorphous Wire. Sensors, 2020, 20, 6986.	3.8	2
4	PT-Level High-Sensitivity Magnetic Sensor with Amorphous Wire. Sensors, 2020, 20, 161.	3.8	10
5	Corrosion Evaluation of Steel Rebar Using Electromagnetic Induction Method. Studies in Applied Electromagnetics and Mechanics, 2020, , .	0.2	1
6	A Feedback Method to Improve the Dynamic Range and the Linearity of Magnetoimpedance Magnetic Sensor. Journal of Sensors, 2019, 2019, 1-8.	1.1	1
7	Evaluation of 3D-Printed titanium alloy using eddy current testing with high-sensitivity magnetic sensor. NDT and E International, 2019, 102, 90-95.	3.7	15
8	On-Chip Terahertz Near-Field Generation/Detection Scheme. , 2018, , .		0
9	AMR Sensor and its Application on Nondestructive Evaluation. , 2017, , .		9
10	A Magnetic Sensor with Amorphous Wire. Sensors, 2014, 14, 10644-10649.	3.8	36
11	Nondestructive material reliability evaluation for Cu-alloy of combustion chamber. Journal of Fluid Science and Technology, 2014, 9, JFST0075-JFST0075.	0.6	O
11	Nondestructive material reliability evaluation for Cu-alloy of combustion chamber. Journal of Fluid Science and Technology, 2014, 9, JFST0075-JFST0075. High–Resolution Magnetic Field Measurement Using an STM–SQUID. Physics Procedia, 2012, 36, 300-305.	0.6	3
	Science and Technology, 2014, 9, JFST0075-JFST0075.		
12	Science and Technology, 2014, 9, JFST0075-JFST0075. High–Resolution Magnetic Field Measurement Using an STM–SQUID. Physics Procedia, 2012, 36, 300-305. Evaluation of an STM-SQUID Probe Microscope. IEEE Transactions on Applied Superconductivity, 2011,	1.2	3
12 13	Science and Technology, 2014, 9, JFST0075-JFST0075. High–Resolution Magnetic Field Measurement Using an STM–SQUID. Physics Procedia, 2012, 36, 300-305. Evaluation of an STM-SQUID Probe Microscope. IEEE Transactions on Applied Superconductivity, 2011, 21, 420-423. STM-SQUID Probe Microscope Based on an RF SQUID Magnetometer. IEEE Transactions on Applied	1.2	3
12 13 14	Science and Technology, 2014, 9, JFST0075-JFST0075. High–Resolution Magnetic Field Measurement Using an STM–SQUID. Physics Procedia, 2012, 36, 300-305. Evaluation of an STM-SQUID Probe Microscope. IEEE Transactions on Applied Superconductivity, 2011, 21, 420-423. STM-SQUID Probe Microscope Based on an RF SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2009, 19, 874-877. High-Tc dc SQUID Cooled by Pulse-Tube Cooler and Corrosion Measurements. IEEE Transactions on	1.2 1.7 1.7	3 6 11
12 13 14	Science and Technology, 2014, 9, JFST0075-JFST0075. High–Resolution Magnetic Field Measurement Using an STM–SQUID. Physics Procedia, 2012, 36, 300-305. Evaluation of an STM-SQUID Probe Microscope. IEEE Transactions on Applied Superconductivity, 2011, 21, 420-423. STM-SQUID Probe Microscope Based on an RF SQUID Magnetometer. IEEE Transactions on Applied Superconductivity, 2009, 19, 874-877. High-Tc dc SQUID Cooled by Pulse-Tube Cooler and Corrosion Measurements. IEEE Transactions on Applied Superconductivity, 2005, 15, 40-43. Saw-wave excitation eddy-current nde based on hts rf squid. IEEE Transactions on Applied	1.2 1.7 1.7	3 6 11 2

Dongfeng He

#	Article	IF	CITATIONS
19	Radio frequency SQUIDs operating at 77 K with 1 GHz lumped-element tank circuits. Applied Physics Letters, 1998, 72, 969-971.	3.3	37
20	First-order gradiometer of high Tc rf SQUID. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2481-2482.	1.2	1
21	Evaluation of Steel Rebar in Concrete Using Electromagnetic Method. , 0, , .		1