Zhenkun Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3206697/publications.pdf Version: 2024-02-01

ZHENKLIN CIL

#	Article	IF	CITATIONS
1	Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Research, 2022, 15, 1547-1553.	10.4	30
2	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	5.8	26
3	Droplet Manipulation and Crystallization Regulation in Inkjet-Printed Perovskite Film Formation. CCS Chemistry, 2022, 4, 1465-1485.	7.8	14
4	Pen-writing high-quality perovskite films and degradable optoelectronic devices. RSC Advances, 2022, 12, 3924-3930.	3.6	2
5	From Structural Design to Functional Construction: Amine Molecules in Highâ€Performance Formamidiniumâ€Based Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	17
6	FAPbI ₃ Perovskite Solar Cells: From Film Morphology Regulation to Device Optimization. Solar Rrl, 2022, 6, .	5.8	19
7	A general method for growth of perovskite single-crystal arrays for high performance photodetectors. Nano Research, 2022, 15, 6568-6573.	10.4	18
8	Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nature Communications, 2020, 11, 5402.	12.8	71
9	Controllable Growth of Highâ€Quality Inorganic Perovskite Microplate Arrays for Functional Optoelectronics. Advanced Materials, 2020, 32, e1908006.	21.0	66
10	In Situ Inkjet Printing of the Perovskite Single-Crystal Array-Embedded Polydimethylsiloxane Film for Wearable Light-Emitting Devices. ACS Applied Materials & Interfaces, 2020, 12, 22157-22162.	8.0	53
11	A general printing approach for scalable growth of perovskite single-crystal films. Science Advances, 2018, 4, eaat2390.	10.3	150
12	Single Crystals: Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing (Small 8/2017). Small, 2017, 13, .	10.0	1
13	Directâ€Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. Small, 2017, 13, 1603217.	10.0	117
14	Three dimensional MOF–sponge for fast dynamic adsorption. Physical Chemistry Chemical Physics, 2017, 19, 5746-5752.	2.8	29
15	Quantum Dots: Patterning Fluorescent Quantum Dot Nanocomposites by Reactive Inkjet Printing (Small 14/2015). Small, 2015, 11, 1614-1614.	10.0	1