
Maegala Nallapan Maniyam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/320661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effectiveness of Soil Extracts from Selangor Peat Swamp and Pristine Forest Soils on the Growth of Green Microalgae sp Forests, 2022, 13, 79.	2.1	3
2	Malaysian Virgin Soil Extracts as Natural Growth Enhancer for Targeted Green Microalgae Species. Applied Sciences (Switzerland), 2022, 12, 4060.	2.5	1
3	Kinetics Growth and Recovery of Valuable Nutrients from Selangor Peat Swamp and Pristine Forest Soils Using Different Extraction Methods as Potential Microalgae Growth Enhancers. Molecules, 2021, 26, 653.	3.8	8
4	Conversion of waste cooking oil by rhodococcal lipase immobilized in gellan gum. E3S Web of Conferences, 2021, 277, 03001.	0.5	0
5	Assessment of Aqueous Extraction Methods on Extractable Organic Matter and Hydrophobic/Hydrophilic Fractions of Virgin Forest Soils. Molecules, 2021, 26, 2480.	3.8	2
6	Decolourization and biodegradation of azo dye methyl red by <i>Rhodococcus</i> strain UCC 0016. Environmental Technology (United Kingdom), 2020, 41, 71-85.	2.2	44
7	Enhanced methylene blue decolourization by Rhodococcus strain UCC 0003 grown in banana peel agricultural waste through response surface methodology. Biocatalysis and Agricultural Biotechnology, 2020, 23, 101486.	3.1	13
8	Enhancement of targeted microalgae species growth using aquaculture sludge extracts. Heliyon, 2020, 6, e04556.	3.2	11
9	Inferring the evolutionary relationship of 23 Malaysian Rhodococcus isolates with potential as cholesterol degrading bacteria. Biocatalysis and Agricultural Biotechnology, 2020, 30, 101840.	3.1	8
10	Effect of inoculum size, inducer and metal ion on lipase production by Rhodococcus strain UCC 0009. E3S Web of Conferences, 2020, 211, 02012.	0.5	0
11	Biotransformation using resting cells of Rhodococcus UKMP-5M for phenol degradation. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101309.	3.1	7
12	Enhanced cyanide biodegradation by immobilized crude extract of Rhodococcus UKMP-5M. Environmental Technology (United Kingdom), 2019, 40, 386-398.	2.2	9
13	Immobilized cells of Rhodococcus strain UCC 0004 as source of green biocatalyst for decolourization and biodegradation of methyl orange. Biocatalysis and Agricultural Biotechnology, 2018, 16, 569-578.	3.1	22
14	Decolourization of Methylene Blue by Rhodococcus Strain UCC 0003. International Journal of Environmental Science and Development, 2018, 9, 322-326.	0.6	3
15	Enzymatic cyanide degradation by cell-free extract of <i>Rhodococcus</i> UKMPâ^5M. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 357-364.	1.7	11
16	Biodetoxification of cyanide-containing industrial wastewaters by Rhodococcus UKMP-5M. Biologia (Poland), 2014, 69, 1635-1643.	1.5	3
17	Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia (Poland), 2013, 68, 177-185.	1.5	22
18	Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M. Journal of General and Applied Microbiology, 2013, 59, 393-404.	0.7	5

#	Article	IF	CITATIONS
19	Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia (Poland), 2012, 67, 837-844.	1.5	15
20	Bioremediation of Cyanide by Optimized Resting Cells of Rhodococcus Strains Isolated from Peninsular Malaysia. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2011, , 98-101.	0.2	10
21	Rhodococcus strain UCC 0010 as green biocatalyst for enhanced biodecolourization of Congo red through response surface methodology. International Journal of Environmental Science and Technology, 0, , 1.	3.5	6