Ragnhild A Lothe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3206026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: Clinical and immunological responses in patients with pancreatic adenocarcinoma. International Journal of Cancer, 2001, 92, 441-450.	5.1	261
2	Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Molecular Cancer, 2017, 16, 116.	19.2	232
3	CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Scientific Reports, 2017, 7, 16618.	3.3	229
4	Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. The Lancet Gastroenterology and Hepatology, 2016, 1, 207-216.	8.1	227
5	Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 104-121.	7.4	205
6	Biomarker-guided therapy for colorectal cancer: strength in complexity. Nature Reviews Clinical Oncology, 2020, 17, 11-32.	27.6	195
7	Differentiation of Human Embryonal Carcinomas In vitro and In vivo Reveals Expression Profiles Relevant to Normal Development. Cancer Research, 2005, 65, 5588-5598.	0.9	194
8	Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro-Oncology, 2013, 15, 135-147.	1.2	190
9	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.9	180
10	ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012, 61, 1560-1567.	12.1	179
11	Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clinical Cancer Research, 2018, 24, 794-806.	7.0	177
12	Distinct epigenetic phenotypes in seminomatous and nonseminomatous testicular germ cell tumors. Oncogene, 2002, 21, 3909-3916.	5.9	161
13	Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nature Genetics, 2013, 45, 680-685.	21.4	154
14	The order of genetic events associated with colorectal cancer progression inferred from meta-analysis of copy number changes. Genes Chromosomes and Cancer, 2006, 45, 31-41.	2.8	143
15	A CpG island hypermethylation profile of primary colorectal carcinomas and colon cancer cell lines. Molecular Cancer, 2004, 3, 28.	19.2	140
16	Genetic Tumor Markers With Prognostic Impact in Dukes' Stages B and C Colorectal Cancer Patients. Journal of Clinical Oncology, 2003, 21, 820-829.	1.6	136
17	Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Molecular Cancer, 2011, 10, 85.	19.2	126
18	MiR-9, -31, and -182 Deregulation Promote Proliferation and Tumor Cell Survival in Colon Cancer. Neoplasia, 2012, 14, 868-IN21.	5.3	124

#	Article	IF	CITATIONS
19	DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets. Molecular Cancer, 2007, 6, 45.	19.2	122
20	ColoGuidePro: A Prognostic 7-Gene Expression Signature for Stage III Colorectal Cancer Patients. Clinical Cancer Research, 2012, 18, 6001-6010.	7.0	109
21	Multifocal Primary Prostate Cancer Exhibits High Degree of Genomic Heterogeneity. European Urology, 2019, 75, 498-505.	1.9	108
22	Germline and somatic <i>NF1</i> mutations in sporadic and NF1â€associated malignant peripheral nerve sheath tumours. Journal of Pathology, 2009, 217, 693-701.	4.5	107
23	DNA Sequence Profiles of the Colorectal Cancer Critical Gene Set KRAS-BRAF-PIK3CA-PTEN-TP53 Related to Age at Disease Onset. PLoS ONE, 2010, 5, e13978.	2.5	102
24	Genetic and Epigenetic Changes of Components Affecting the WNT Pathway in Colorectal Carcinomas Stratified by Microsatellite Instability. Neoplasia, 2005, 7, 99-108.	5.3	101
25	Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. International Journal of Cancer, 2012, 131, 570-581.	5.1	100
26	Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology, 2015, 61, 1651-1659.	7.3	94
27	MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget, 2016, 7, 6476-6505.	1.8	93
28	Deletion of 1p loci and microsatellite instability in colorectal polyps. Genes Chromosomes and Cancer, 1995, 14, 182-188.	2.8	90
29	Combination therapies with HSP90 inhibitors against colorectal cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 240-247.	7.4	81
30	Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes and Cancer, 2002, 34, 168-174.	2.8	77
31	Molecular Characteristics of Malignant Ovarian Germ Cell Tumors and Comparison With Testicular Counterparts: Implications for Pathogenesis. Endocrine Reviews, 2013, 34, 339-376.	20.1	77
32	Chromosome band 9p21 is frequently altered in malignant peripheral nerve sheath tumors: Studies ofCDKN2A and other genes of the pRB pathway. Genes Chromosomes and Cancer, 1999, 26, 151-160.	2.8	76
33	Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Molecular Cancer, 2010, 9, 100.	19.2	75
34	Topoisomerase-IIα Is Upregulated in Malignant Peripheral Nerve Sheath Tumors and Associated With Clinical Outcome. Journal of Clinical Oncology, 2003, 21, 4586-4591.	1.6	74
35	Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Medicine, 2011, 3, 32.	8.2	73
36	<i>FLI1</i> is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes and Cancer, 2012, 51, 240-249.	2.8	73

#	Article	IF	CITATIONS
37	Multilevel genomics of colorectal cancers with microsatellite instability—clinical impact of JAK1 mutations and consensus molecular subtype 1. Genome Medicine, 2017, 9, 46.	8.2	71
38	Alterations at Chromosome 17 Loci in Peripheral Nerve Sheath Tumors. Journal of Neuropathology and Experimental Neurology, 1995, 54, 65-73.	1.7	70
39	Epigenetic disruption of miR-130a promotes prostate cancer by targeting SEC23B and DEPDC1. Cancer Letters, 2017, 385, 150-159.	7.2	70
40	Novel target genes and a valid biomarker panel identified for cholangiocarcinoma. Epigenetics, 2012, 7, 1249-1257.	2.7	68
41	Patient-Derived Organoids from Multiple Colorectal Cancer Liver Metastases Reveal Moderate Intra-patient Pharmacotranscriptomic Heterogeneity. Clinical Cancer Research, 2020, 26, 4107-4119.	7.0	68
42	NEDD4 is overexpressed in colorectal cancer and promotes colonic cell growth independently of the PI3K/PTEN/AKT pathway. Cellular Signalling, 2013, 25, 12-18.	3.6	65
43	Intra-patient Inter-metastatic Genetic Heterogeneity in Colorectal Cancer as a Key Determinant of Survival after Curative Liver Resection. PLoS Genetics, 2016, 12, e1006225.	3.5	64
44	<i>UVRAG</i> mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy, 2010, 6, 863-870.	9.1	63
45	Prognostic Significance of β-Catenin, E-Cadherin, and SOX9 in Colorectal Cancer: Results from a Large Population-Representative Series. Frontiers in Oncology, 2014, 4, 118.	2.8	63
46	CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer. Annals of Oncology, 2018, 29, 1227-1234.	1.2	63
47	WNT1 inducible signaling pathway protein 3, WISP-3, a novel target gene in colorectal carcinomas with microsatellite instability. Gastroenterology, 2001, 121, 1275-1280.	1.3	62
48	The testicular germ cell tumour genome. Apmis, 2003, 111, 136-151.	2.0	61
49	The epigenome of testicular germ cell tumors. Apmis, 2007, 115, 1147-1160.	2.0	61
50	Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget, 2016, 7, 5273-5288.	1.8	60
51	Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Human Molecular Genetics, 2013, 22, 2748-2753.	2.9	59
52	Genome signatures of colon carcinoma cell lines. Cancer Genetics and Cytogenetics, 2004, 155, 119-131.	1.0	58
53	Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome. PLoS ONE, 2011, 6, e24419.	2.5	58
54	Molecular Genetic Studies of Tumor suppressor Gene Regions on chromosomes 13 and 17 in Colorectal Tumors. Journal of the National Cancer Institute, 1992, 84, 1100-1108.	6.3	55

#	Article	IF	CITATIONS
55	The recently suggested intestinal cancer stem cell marker <i>DCLK1</i> is an epigenetic biomarker for colorectal cancer. Epigenetics, 2014, 9, 346-350.	2.7	55
56	Genomic Changes in Chromosomes 10, 16, and X in Malignant Peripheral Nerve Sheath Tumors Identify a High-Risk Patient Group. Journal of Clinical Oncology, 2010, 28, 1573-1582.	1.6	54
57	RAS Signaling in Colorectal Carcinomas through Alteration of RAS, RAF, NF1, and/or RASSF1A. Neoplasia, 2008, 10, 680-IN3.	5.3	52
58	Biallelic inactivation ofTP53 rarely contributes to the development of malignant peripheral nerve sheath tumors. Genes Chromosomes and Cancer, 2001, 30, 202-206.	2.8	51
59	Hypermethylated MAL gene – a silent marker of early colon tumorigenesis. Journal of Translational Medicine, 2008, 6, 13.	4.4	48
60	Identification of p53 as a strong predictor of survival for patients with malignant peripheral nerve sheath tumors. Neuro-Oncology, 2009, 11, 514-528.	1.2	47
61	Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays. Neoplasia, 2003, 5, 397-404.	5.3	46
62	Evaluation of 1p Losses in Primary Carcinomas, Local Recurrences and Peripheral Metastases from Colorectal Cancer Patients. Neoplasia, 2000, 2, 514-522.	5.3	42
63	Tumour-infiltrating CD8+ lymphocytes and colorectal cancer recurrence by tumour and nodal stage. British Journal of Cancer, 2019, 121, 474-482.	6.4	41
64	CpG island methylator phenotype identifies high risk patients among microsatellite stable <i>BRAF</i> mutated colorectal cancers. International Journal of Cancer, 2017, 141, 967-976.	5.1	40
65	Prognostic, predictive, and pharmacogenomic assessments of <scp>CDX</scp> 2 refine stratification of colorectal cancer. Molecular Oncology, 2018, 12, 1639-1655.	4.6	40
66	DNA methylation analyses of the connexin gene family reveal silencing of <i>GJC1</i> (Connexin45) by promoter hypermethylation in colorectal cancer. Epigenetics, 2011, 6, 602-609.	2.7	39
67	Connexins in colorectal cancer pathogenesis. International Journal of Cancer, 2015, 137, 1-11.	5.1	39
68	Interfocal heterogeneity challenges the clinical usefulness of molecular classification of primary prostate cancer. Scientific Reports, 2019, 9, 13579.	3.3	38
69	Expression Patterns of Cell Cycle Components in Sporadic and Neurofibromatosis Type 1-Related Malignant Peripheral Nerve Sheath Tumors. Journal of Neuropathology and Experimental Neurology, 2005, 64, 74-81.	1.7	36
70	Novel 5′ Fusion Partners of ETV1 and ETV4 in Prostate Cancer. Neoplasia, 2013, 15, 720-IN6.	5.3	36
71	Novel mutations of the suppressor genePTENin colorectal carcinomas stratified by microsatellite instability- andTP53mutation- status. Human Mutation, 2008, 29, E252-E262.	2.5	34
72	Long noncoding RNA <i>MIR31HG</i> is a <i>bona fide</i> prognostic marker with colorectal cancer cellâ€intrinsic properties. International Journal of Cancer, 2019, 144, 2843-2853.	5.1	33

#	Article	IF	CITATIONS
73	Influence of Microsatellite Instability and KRAS and BRAF Mutations on Lymph Node Harvest in Stage I–III Colon Cancers. Molecular Medicine, 2013, 19, 286-293.	4.4	32
74	Regulator of Chromosome Condensation 2 Identifies High-Risk Patients within Both Major Phenotypes of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 3759-3770.	7.0	32
75	Protein expression of BIRC5, TK1, and TOP2A in malignant peripheral nerve sheath tumours – A prognostic test after surgical resection. Molecular Oncology, 2015, 9, 1129-1139.	4.6	32
76	A Tissue-Based Comparative Effectiveness Analysis of Biomarkers for Early Detection of Colorectal Tumors. Clinical and Translational Gastroenterology, 2012, 3, e27.	2.5	30
77	Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing. Translational Oncology, 2013, 6, 546-IN5.	3.7	29
78	Colorectal cancer DNA methylation marker panel validated with high performance in Non-Hodgkin lymphoma. Epigenetics, 2014, 9, 428-436.	2.7	29
79	Metastatic heterogeneity of the consensus molecular subtypes of colorectal cancer. Npj Genomic Medicine, 2021, 6, 59.	3.8	29
80	Anticipating the Clinical Use of Prognostic Gene Expression–Based Tests for Colon Cancer Stage II and III: Is Godot Finally Arriving?. Clinical Cancer Research, 2013, 19, 6669-6677.	7.0	27
81	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	12.8	27
82	A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clinical Epigenetics, 2018, 10, 24.	4.1	26
83	Alternative splicing expands the prognostic impact of <i>KRAS</i> in microsatellite stable primary colorectal cancer. International Journal of Cancer, 2019, 144, 841-847.	5.1	26
84	Digital image analysis of multiplex fluorescence IHC in colorectal cancer recognizes the prognostic value of CDX2 and its negative correlation with SOX2. Laboratory Investigation, 2020, 100, 120-134.	3.7	26
85	Identification of Novel Fusion Genes in Testicular Germ Cell Tumors. Cancer Research, 2016, 76, 108-116.	0.9	25
86	Specific and redundant activities of <i>ETV1</i> and <i>ETV4</i> in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget, 2015, 6, 5217-5236.	1.8	24
87	DNA Hypermethylation of MAL: A Promising Diagnostic Biomarker for Colorectal Tumors. Gastroenterology, 2007, 132, 1631-1632.	1.3	22
88	Molecular correlates of sensitivity to PARP inhibition beyond homologous recombination deficiency in pre-clinical models of colorectal cancer point to wild-type TP53 activity. EBioMedicine, 2020, 59, 102923.	6.1	22
89	Slip Slidin' Away: A Duodecen-nial Review of Targeted Genes in Mismatch Repair Deficient Colorectal Cancer. Critical Reviews in Oncogenesis, 2007, 13, 229-257.	0.4	22
90	The exonâ€level biomarker <i>SLC39A14</i> has organâ€confined cancerâ€specificity in colorectal cancer. International Journal of Cancer, 2012, 131, 1479-1485.	5.1	20

#	Article	IF	CITATIONS
91	Gene expression profiles of CMS2-epithelial/canonical colorectal cancers are largely driven by DNA copy number gains. Oncogene, 2019, 38, 6109-6122.	5.9	20
92	High Concordance and Negative Prognostic Impact of RAS/BRAF/PIK3CA Mutations in Multiple Resected Colorectal Liver Metastases. Clinical Colorectal Cancer, 2020, 19, e26-e47.	2.3	20
93	Transcriptional and functional consequences of TP53 splice mutations in colorectal cancer. Oncogenesis, 2019, 8, 35.	4.9	19
94	A novel transcript, <i>VNN1â€AB</i> , as a biomarker for colorectal cancer. International Journal of Cancer, 2014, 135, 2077-2084.	5.1	18
95	Methylated RASSF1A in malignant peripheral nerve sheath tumors identifies neurofibromatosis type 1 patients with inferior prognosis. Neuro-Oncology, 2015, 17, 63-69.	1.2	17
96	Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages. Neoplasia, 2015, 17, 167-174.	5.3	17
97	A panel of intestinal differentiation markers (CDX2, GPA33, and LI-cadherin) identifies gastric cancer patients with favourable prognosis. Gastric Cancer, 2020, 23, 811-823.	5.3	16
98	High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia, 2021, 23, 634-641.	5.3	16
99	Transcriptome instability as a molecular pan-cancer characteristic of carcinomas. BMC Genomics, 2014, 15, 672.	2.8	15
100	Novel RNA variants in colorectal cancers. Oncotarget, 2015, 6, 36587-36602.	1.8	15
101	Drug sensitivity and resistance testing identifies PLK1 inhibitors and gemcitabine as potent drugs for malignant peripheral nerve sheath tumors. Molecular Oncology, 2017, 11, 1156-1171.	4.6	15
102	Improved prognostication of glioblastoma beyond molecular subtyping by transcriptional profiling of the tumor microenvironment. Molecular Oncology, 2020, 14, 1016-1027.	4.6	15
103	Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding. Cell Cycle, 2016, 15, 2943-2957.	2.6	14
104	E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin43 to promote loss of gap junctions. Journal of Cell Science, 2017, 130, 2867-2882.	2.0	14
105	Re-assessing ZNF331 as a DNA methylation biomarker for colorectal cancer. Clinical Epigenetics, 2018, 10, 70.	4.1	14
106	Heterogeneous radiological response to neoadjuvant therapy is associated with poor prognosis after resection of colorectal liver metastases. European Journal of Surgical Oncology, 2019, 45, 2340-2346.	1.0	14
107	Truncated PPM1D impairs stem cell response to genotoxic stress and promotes growth of APC-deficient tumors in the mouse colon. Cell Death and Disease, 2019, 10, 818.	6.3	12
108	Technical differences between sequencing and microarray platforms impact transcriptomic subtyping of colorectal cancer. Cancer Letters, 2020, 469, 246-255.	7.2	12

#	Article	IF	CITATIONS
109	Inferior survival for patients with malignant peripheral nerve sheath tumors defined by aberrant TP53. Modern Pathology, 2018, 31, 1694-1707.	5.5	11
110	Exploratory analyses of consensus molecular subtype-dependent associations of TP53 mutations with immunomodulation and prognosis in colorectal cancer. ESMO Open, 2019, 4, e000523.	4.5	11
111	Genomic and prognostic heterogeneity among <i>RAS/BRAF</i> ^{V600E} / <i>TP53</i> coâ€mutated resectable colorectal liver metastases. Molecular Oncology, 2021, 15, 830-845.	4.6	11
112	De novo transcriptomic subtyping of colorectal cancer liver metastases in the context of tumor heterogeneity. Genome Medicine, 2021, 13, 143.	8.2	10
113	The loss of NKX3.1 expression in testicularand prostatecancers is not caused by promoter hypermethylation. Molecular Cancer, 2005, 4, 8.	19.2	8
114	C77G in PTPRC (CD45) is no risk allele for ovarian cancer, but associated with less aggressive disease. PLoS ONE, 2017, 12, e0182030.	2.5	8
115	Prognostic role of tumour-infiltrating lymphocytes and macrophages in relation to MSI, CDX2 and BRAF status: a population-based study of metastatic colorectal cancer patients. British Journal of Cancer, 2022, 126, 48-56.	6.4	8
116	Spatial analysis and CD25-expression identify regulatory T cells as predictors of a poor prognosis in colorectal cancer. Modern Pathology, 2022, 35, 1236-1246.	5.5	8
117	Treatment outcomes and prognostic factors after chemoradiotherapy for anal cancer. Acta Oncológica, 2021, 60, 921-930.	1.8	7
118	Antibody crossreactivity between the tumour suppressor PHLPP1 and the protoâ€oncogene βâ€catenin. EMBO Reports, 2013, 14, 10-11.	4.5	6
119	Prediction of relapse-free survival according to adjuvant chemotherapy and regulator of chromosome condensation 2 (RCC2) expression in colorectal cancer. ESMO Open, 2020, 5, e001040.	4.5	6
120	Increased sensitivity to SMAC mimetic LCL161 identified by longitudinal ex vivo pharmacogenomics of recurrent, KRAS mutated rectal cancer liver metastases. Journal of Translational Medicine, 2021, 19, 384.	4.4	6
121	Lack of parental origin specificity of altered alleles at 11p15 in testicular germ cell tumors. Cancer Genetics and Cytogenetics, 2003, 147, 1-8.	1.0	4
122	Prognostic relevance of an epigenetic biomarker panel in sentinel lymph nodes from colon cancer patients. Clinical Epigenetics, 2017, 9, 97.	4.1	4
123	Multiregional assessment of CIMP in primary colorectal cancers: Phenotype concordance but marker variability. International Journal of Cancer, 2021, 148, 1652-1657.	5.1	4
124	The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Medicine, 2021, 13, 142.	8.2	4
125	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	3.1	4
126	Eâ€cadherin is a robust prognostic biomarker in colorectal cancer and low expression is associated with sensitivity to inhibitors of topoisomerase, aurora, and HSP90 in preclinical models. Molecular Oncology, 2022, 16, 2312-2329.	4.6	4

#	Article	IF	CITATIONS
127	Association Study between Polymorphisms in DNA Methylation–Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1769-1779.	2.5	4
128	Expressed prognostic biomarkers for primary prostate cancer independent of multifocality and transcriptome heterogeneity. Cancer Gene Therapy, 2022, 29, 1276-1284.	4.6	3
129	<i>In situ</i> expression of <scp>ERG</scp> protein in the context of tumor heterogeneity identifies prostate cancer patients with inferior prognosis. Molecular Oncology, 2022, 16, 2810-2822.	4.6	3
130	The Prognostic Relevance of Sentinel Lymph Node Metastases Assessed by PHGR1 mRNA Quantification in Stage I to III Colon Cancer. Translational Oncology, 2018, 11, 436-443.	3.7	2
131	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	3.1	2
132	Multiplex immunohistochemistry of metastatic colorectal cancer and ex vivo tumor avatars. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188682.	7.4	1
133	Novel drug discovery by pharmacogenomic profiling of 36 colorectal cancer cell lines Journal of Clinical Oncology, 2016, 34, 604-604.	1.6	Ο