Julian Weldon Adlard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3206003/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risks of Breast, Ovarian, and Contralateral Breast Cancer for <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. JAMA - Journal of the American Medical Association, 2017, 317, 2402.	3.8	1,898
2	Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results From Prospective Analysis of EMBRACE. Journal of the National Cancer Institute, 2013, 105, 812-822.	3.0	753
3	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	3.8	390
4	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	9.4	356
5	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
6	Effect of BRCA Mutations on Metastatic Relapse and Cause-specific Survival After Radical Treatment for Localised Prostate Cancer. European Urology, 2015, 68, 186-193.	0.9	279
7	Cancer Risks Associated With Germline <i>PALB2</i> Pathogenic Variants: An International Study of 524 Families. Journal of Clinical Oncology, 2020, 38, 674-685.	0.8	270
8	Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk. PLoS Genetics, 2013, 9, e1003212.	1.5	244
9	Mutational spectrum in a worldwide study of 29,700 families with <i>BRCA1</i> or <i>BRCA2</i> mutations. Human Mutation, 2018, 39, 593-620.	1.1	224
10	Tumour risks and genotype–phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes <i>SDHB</i> , <i>SDHC</i> and <i>SDHD</i> . Journal of Medical Genetics, 2018, 55, 384-394.	1.5	177
11	Comprehensive Study of the Clinical Phenotype of Germline <i>BAP1</i> Variant-Carrying Families Worldwide. Journal of the National Cancer Institute, 2018, 110, 1328-1341.	3.0	164
12	Prediction of Breast and Prostate Cancer Risks in Male <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Using Polygenic Risk Scores. Journal of Clinical Oncology, 2017, 35, 2240-2250.	0.8	152
13	Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. European Urology, 2020, 77, 24-35.	0.9	124
14	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	1.5	105
15	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	2.2	97
16	Male breast cancer in BRCA1 and BRCA2 mutation carriers: pathology data from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2016, 18, 15.	2.2	88
17	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	1.1	82
18	Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Research, 2011, 13, R110.	2.2	71

JULIAN WELDON ADLARD

#	Article	IF	CITATIONS
19	Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2011, 20, 3304-3321.	1.4	68
20	Associations of common breast cancer susceptibility alleles with risk of breast cancer subtypes in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2014, 16, 3416.	2.2	57
21	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	1.5	47
22	Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. American Journal of Human Genetics, 2018, 103, 3-18.	2.6	46
23	MLH1 â^93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer. International Journal of Cancer, 2008, 123, 2456-2459.	2.3	44
24	Risk-reducing salpingo-oophorectomy, natural menopause, and breast cancer risk: an international prospective cohort of BRCA1 and BRCA2 mutation carriers. Breast Cancer Research, 2020, 22, 8.	2.2	41
25	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.4	39
26	Robust Diagnostic Genetic Testing Using Solution Capture Enrichment and a Novel Variantâ€Filtering Interface. Human Mutation, 2014, 35, 434-441.	1.1	38
27	Oral contraceptive use and ovarian cancer risk for BRCA1/2 mutation carriers: an international cohort study. American Journal of Obstetrics and Gynecology, 2021, 225, 51.e1-51.e17.	0.7	34
28	Oral Contraceptive Use and Breast Cancer Risk: Retrospective and Prospective Analyses From a BRCA1 and BRCA2 Mutation Carrier Cohort Study. JNCI Cancer Spectrum, 2018, 2, pky023.	1.4	33
29	Cas9-based enrichment and single-molecule sequencing for precise characterization of genomic duplications. Laboratory Investigation, 2020, 100, 135-146.	1.7	33
30	Thalidomide in the treatment of cancer. Anti-Cancer Drugs, 2000, 11, 787-791.	0.7	32
31	Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Human Molecular Genetics, 2011, 20, 4732-4747.	1.4	32
32	Height and Body Mass Index as Modifiers of Breast Cancer Risk in <i>BRCA1</i> / <i>2</i> Mutation Carriers: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2019, 111, 350-364.	3.0	30
33	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	2.3	28
34	An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research, 2015, 17, 61.	2.2	26
35	A Nonsynonymous Polymorphism in <i>IRS1</i> Modifies Risk of Developing Breast and Ovarian Cancers in <i>BRCA1</i> and Ovarian Cancer in <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1362-1370.	1.1	23
36	Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers. Breast Cancer Research, 2012, 14, R63.	2.2	22

#	Article	IF	CITATIONS
37	Increasing Evidence for the Association of Breast Implant-Associated Anaplastic Large Cell Lymphoma and Li Fraumeni Syndrome. Case Reports in Genetics, 2019, 2019, 1-5.	0.1	20
38	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	2.9	19
39	A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers. Nature Communications, 2021, 12, 1078.	5.8	19
40	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	3.0	19
41	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	1.1	18
42	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	1.1	16
43	Risks of breast or ovarian cancer in BRCA1 or BRCA2 predictive test negatives: findings from the EMBRACE study. Genetics in Medicine, 2018, 20, 1575-1582.	1.1	15
44	Additional loss of MSH2 and MSH6 expression in sporadic deficient mismatch repair colorectal cancer due to MLH1 promoter hypermethylation. Journal of Clinical Pathology, 2019, 72, 443-447.	1.0	14
45	Lymphocyte Telomere Length Is Long in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers Regardless of Cancer-Affected Status. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1018-1024.	1.1	13
46	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	1.1	10
47	Histopathology of melanocytic lesions in a family with an inherited <scp>BAP1</scp> mutation. Journal of Cutaneous Pathology, 2016, 43, 287-289.	0.7	10
48	SDHC phaeochromocytoma and paraganglioma: A UKâ€wide case series. Clinical Endocrinology, 2022, 96, 499-512.	1.2	7
49	Prostate Cancer Risk by BRCA2 Genomic Regions. European Urology, 2020, 78, 494-497.	0.9	6
50	Characterization and Genomic Localization of a SMAD4 Processed Pseudogene. Journal of Molecular Diagnostics, 2017, 19, 933-940.	1.2	5
51	Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads. Molecular Diagnosis and Therapy, 2017, 21, 685-692.	1.6	4
52	Long-read nanopore sequencing enables accurate confirmation of a recurrent PMS2 insertion–deletion variant located in a region of complex genomic architecture. Cancer Genetics, 2021, 256-257, 122-126.	0.2	4
53	Evaluation of tumour surveillance protocols and outcomes in von Hippel-Lindau disease in a national health service. British Journal of Cancer, 2022, 126, 1339-1345.	2.9	4
54	Multiple primary cancers (renal papillary, lymphoma and teratoma) and hepatic cysts in association with a pathogenic germline mutation in the MET gene. Familial Cancer, 2021, 20, 81-83.	0.9	3

#	Article	IF	CITATIONS
55	Homozygosity for the pathogenic RET hotspot variant p.Cys634Trp: A consanguineous family with MEN2A. European Journal of Medical Genetics, 2021, 64, 104141.	0.7	3