Yusuke Nanba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3205725/publications.pdf

Version: 2024-02-01

516710 501196 38 805 16 28 citations h-index g-index papers 39 39 39 1150 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties. ACS Materials Au, 2022, 2, 110-116.	6.0	4
2	Shape stability and electronic structure of Pt3M (MÂ=ÂCo or Ni) alloy nanoparticles. Computational Materials Science, 2022, 203, 111132.	3.0	5
3	Noble-Metal High-Entropy-Alloy Nanoparticles: Atomic-Level Insight into the Electronic Structure. Journal of the American Chemical Society, 2022, 144, 3365-3369.	13.7	94
4	<i>Operando</i> resonant soft X-ray emission spectroscopy of the LiMn ₂ O ₄ cathode using an aqueous electrolyte solution. Physical Chemistry Chemical Physics, 2022, 24, 19177-19183.	2.8	2
5	Thermodynamic stability of Pd–Ru alloy nanoparticles: combination of density functional theory calculations, supervised learning, and Wang–Landau sampling. Physical Chemistry Chemical Physics, 2022, 24, 15452-15461.	2.8	3
6	First-Principles Calculations of Stability, Electronic Structure, and Sorption Properties of Nanoparticle Systems. Journal of Computer Chemistry Japan, 2021, 20, 23-47.	0.1	0
7	An Element-Based Generalized Coordination Number for Predicting the Oxygen Binding Energy on Pt ₃ M (M = Co, Ni, or Cu) Alloy Nanoparticles. ACS Omega, 2021, 6, 3218-3226.	3.5	17
8	Highly Stable and Active Solidâ€Solutionâ€Alloy Threeâ€Way Catalyst by Utilizing Configurationalâ€Entropy Effect. Advanced Materials, 2021, 33, e2005206.	21.0	22
9	Density Functional Theory and Machine Learning Description and Prediction of Oxygen Atom Chemisorption on Platinum Surfaces and Nanoparticles. ACS Omega, 2021, 6, 17424-17432.	3.5	9
10	Thermodynamic Stabilities of PdRuM (M = Cu, Rh, Ir, Au) Alloy Nanoparticles Assessed by Wang–Landau Sampling Combined with DFT Calculations and Multiple Regression Analysis. Bulletin of the Chemical Society of Japan, 2021, 94, 2484-2492.	3.2	6
11	Electronic structure and phase stability of Pt3M (MÂ=ÂCo, Ni, and Cu) bimetallic nanoparticles. Computational Materials Science, 2020, 184, 109874.	3.0	9
12	Mn 2p resonant X-ray emission clarifies the redox reaction and charge-transfer effects in LiMn ₂ O ₄ . Physical Chemistry Chemical Physics, 2019, 21, 18363-18369.	2.8	11
13	NO Adsorption on 4d and 5d Transition-Metal (Rh, Pd, Ag, Ir, and Pt) Nanoparticles: Density Functional Theory Study and Supervised Learning. Journal of Physical Chemistry C, 2019, 123, 28114-28122.	3.1	22
14	Frontispiz: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, .	2.0	0
15	Frontispiece: A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
16	<i>Operando</i> soft X-ray emission spectroscopy of the Fe ₂ O ₃ anode to observe the conversion reaction. Physical Chemistry Chemical Physics, 2019, 21, 26351-26357.	2.8	9
17	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie, 2019, 131, 2252-2257.	2.0	11
18	A CO Adsorption Site Change Induced by Copper Substitution in a Ruthenium Catalyst for Enhanced CO Oxidation Activity. Angewandte Chemie - International Edition, 2019, 58, 2230-2235.	13.8	48

#	Article	IF	CITATIONS
19	Solidâ€Solution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie, 2018, 130, 4595-4599.	2.0	13
20	Large Chargeâ€Transfer Energy in LiFePO ₄ Revealed by Fullâ€Multiplet Calculation for the Fe <i>L</i>₃â€edge Soft Xâ€ray Emission Spectra. ChemPhysChem, 2018, 19, 988-992.	2.1	13
21	Solidâ€Solution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie - International Edition, 2018, 57, 4505-4509.	13.8	86
22	Electronic origin of hydrogen storage in MOF-covered palladium nanocubes investigated by synchrotron X-rays. Communications Chemistry, 2018, 1 , .	4.5	24
23	Investigation of the relationship between the cycle performance and the electronic structure in LiAlxMn2â^'xO4 (x = 0 and 0.2) using soft X-ray spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 16507-16511.	2.8	10
24	Structural Stability of Ruthenium Nanoparticles: A Density Functional Theory Study. Journal of Physical Chemistry C, 2017, 121, 27445-27452.	3.1	46
25	Theoretical Study of the Hydrogen Absorption Mechanism into a Palladium Nanocube Coated with a Metal–Organic Framework. Journal of Physical Chemistry C, 2017, 121, 14611-14617.	3.1	23
26	Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Advances, 2016, 6, .	1.3	48
27	Correlation between the O 2p Orbital and Redox Reaction in LiMn _{0.6} Fe _{0.4} PO ₄ Nanowires Studied by Soft Xâ€ray Absorption. ChemPhysChem, 2016, 17, 4110-4115.	2.1	7
28	Redox Potential Paradox in Na _{<i>x</i>} MO ₂ for Sodium-Ion Battery Cathodes. Chemistry of Materials, 2016, 28, 1058-1065.	6.7	93
29	Operando soft x-ray emission spectroscopy of LiMn2O4 thin film involving Li–ion extraction/insertion reaction. Electrochemistry Communications, 2015, 50, 93-96.	4.7	29
30	Charge/discharge mechanism of a new Co-doped Li 2 O cathode material for a rechargeable sealed lithium-peroxide battery analyzed by X-ray absorption spectroscopy. Journal of Power Sources, 2015, 287, 220-225.	7.8	31
31	Distinguishing between High- and Low-Spin States for Divalent Mn in Mn-Based Prussian Blue Analogue by High-Resolution Soft X-ray Emission Spectroscopy. Journal of Physical Chemistry Letters, 2014, 5, 4008-4013.	4.6	22
32	Anisotropic charge-transfer effects in the asymmetric Fe(CN) ₅ NO octahedron of sodium nitroprusside: a soft X-ray absorption spectroscopy study. Physical Chemistry Chemical Physics, 2014, 16, 7031-7036.	2.8	21
33	Li-ion and Na-ion insertion into size-controlled nickel hexacyanoferrate nanoparticles. RSC Advances, 2014, 4, 24955.	3.6	36
34	Observation of π backbonding features appearing in Fe 2p X-ray absorption spectra and Fe 1s-4p-1s resonant X-ray emission spectra of RbMn[Fe(CN) ₆]. Journal of Physics: Conference Series, 2013, 430, 012082.	0.4	1
35	Sm 4 <i>f</i> Electronic State of Heavy Fermion Compound SmOs ₄ Sb ₁₂ by Theory of High-Energy Spectroscopy. Journal of the Physical Society of Japan, 2013, 82, 104712.	1.6	5
36	Theory of Fe and Mn 2p X-ray absorption for RbMn[Fe(CN)6]. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 167-174.	1.7	8

#	Article	IF	CITATIONS
37	Charge Transfer Effects on Fe 2p X-ray Photoemission of RbMn[Fe(CN)6], K3Fe(CN)6, and K4Fe(CN)6. Journal of the Physical Society of Japan, 2011, 80, 074710.	1.6	4
38	Competition between Backbonding and Electron Correlation in Fe Cyanides. Journal of the Physical Society of Japan, 2010, 79, 114722.	1.6	11