Markus Sauer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3205667/markus-sauer-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

356	19,793	75	130
papers	citations	h-index	g-index
417	23,256 ext. citations	7.9	6.92
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
356	Unraveling the hidden temporal range of fast Edrenergic receptor mobility by time-resolved fluorescence <i>Communications Biology</i> , 2022 , 5, 176	6.7	1
355	Recombinant pro-CTSD (cathepsin D) enhances SNCA/岳ynuclein degradation in 岳ynucleinopathy models <i>Autophagy</i> , 2022 ,	10.2	1
354	Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA <i>Nature</i> , 2022 , 605, 539-544	50.4	O
353	Genetic Code Expansion and Click-Chemistry Labeling to Visualize GABA-A Receptors by Super-Resolution Microscopy <i>Frontiers in Synaptic Neuroscience</i> , 2021 , 13, 727406	3.5	О
352	Bioorthogonal labeling of transmembrane proteins with non-canonical amino acids unveils masked epitopes in live neurons. <i>Nature Communications</i> , 2021 , 12, 6715	17.4	5
351	Improved biocatalytic cascade conversion of CO2 to methanol by enzymes Co-immobilized in tailored siliceous mesostructured cellular foams. <i>Catalysis Science and Technology</i> , 2021 , 11, 6952-6959	5.5	О
350	Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy. <i>Communications Biology</i> , 2021 , 4, 1151	6.7	O
349	Active zone compaction correlates with presynaptic homeostatic potentiation. <i>Cell Reports</i> , 2021 , 37, 109770	10.6	3
348	Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26685-26693	16.4	O
347	Superresolution Microscopy of Sphingolipids. <i>Methods in Molecular Biology</i> , 2021 , 2187, 303-311	1.4	1
346	Tethered agonist exposure in intact adhesion/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. <i>Molecular Cell</i> , 2021 , 81, 905-921.e5	17.6	18
345	Super-resolving Microscopy in Neuroscience. <i>Chemical Reviews</i> , 2021 , 121, 11971-12015	68.1	12
344	RhoA/Cdc42 signaling drives cytoplasmic maturation but not endomitosis in megakaryocytes. <i>Cell Reports</i> , 2021 , 35, 109102	10.6	1
343	Defining the Basis of Cyanine Phototruncation Enables a New Approach to Single-Molecule Localization Microscopy. <i>ACS Central Science</i> , 2021 , 7, 1144-1155	16.8	10
342	Single-molecule localization microscopy. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		67
341	Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia. <i>Communications Biology</i> , 2021 , 4, 799	6.7	5
340	Upregulation of CD38 expression on multiple myeloma cells by novel HDAC6 inhibitors is a class effect and augments the efficacy of daratumumab. <i>Leukemia</i> , 2021 , 35, 201-214	10.7	29

(2020-2021)

339	Superagonistic CD28 stimulation induces IFN-Irelease from mouse T helper 1 cells in vitro and in vivo. <i>European Journal of Immunology</i> , 2021 , 51, 738-741	6.1	1	
338	A role for TASK2 channels in the human immunological synapse. <i>European Journal of Immunology</i> , 2021 , 51, 342-353	6.1	1	
337	Variant signaling topology at the cancer cell-T-cell interface induced by a two-component T-cell engager. <i>Cellular and Molecular Immunology</i> , 2021 , 18, 1568-1570	15.4	2	
336	Elucidating the formation and active state of Cu co-catalysts for photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021 , 9, 21958-21971	13	3	
335	Click-correlative lightand electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria. <i>Scientific Reports</i> , 2021 , 11, 4300	4.9	1	
334	Photoblueing of organic dyes can cause artifacts in super-resolution microscopy. <i>Nature Methods</i> , 2021 , 18, 253-257	21.6	11	
333	Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. <i>Journal of Neural Transmission</i> , 2021 , 128, 225-241	4.3	6	
332	Targeted volumetric single-molecule localization microscopy of defined presynaptic structures in brain sections. <i>Communications Biology</i> , 2021 , 4, 407	6.7	1	
331	Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis. <i>Current Biology</i> , 2021 , 31, 3575-3585.e9	6.3	7	
330	Wettability transition of femtosecond laser patterned nodular cast iron (NCI) substrate. <i>Applied Surface Science</i> , 2021 , 559, 149897	6.7	3	
329	Enhancement of photocatalytic oxidation of benzyl alcohol by edge-functionalized modified carbon nitride: A DFT evaluation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2021 , 419, 113452	4.7	1	
328	Azidosphinganine enables metabolic labeling and detection of sphingolipid synthesis. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 2203-2212	3.9	3	
327	Ex-dSTORM and automated quantitative image analysis of expanded filamentous structures. <i>Methods in Cell Biology</i> , 2021 , 161, 317-340	1.8	1	
326	Hochaufgelßte Visualisierung einzelner Molekle auf ganzen Zellen. <i>BioSpektrum</i> , 2020 , 26, 735-738	0.1		
325	Dynamic Potential Sputtering of Lunar Analog Material by Solar Wind Ions. <i>Astrophysical Journal</i> , 2020 , 891, 100	4.7	14	
324	Conformationally restrained pentamethine cyanines and use in reductive single molecule localization microscopy. <i>Methods in Enzymology</i> , 2020 , 641, 225-244	1.7	3	
323	Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). <i>Nature Communications</i> , 2020 , 11, 3388	17.4	51	
322	Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nature Communications, 2020, 11, 3222	17.4	17	

321	Serotonin (5-HT) neuron-specific inactivation of Cadherin-13 impacts 5-HT system formation and cognitive function. <i>Neuropharmacology</i> , 2020 , 168, 108018	5.5	11
320	Whole-cell imaging of plasma membrane receptors by 3D lattice light-sheet dSTORM. <i>Nature Communications</i> , 2020 , 11, 887	17.4	21
319	Expansion Microscopy for Cell Biology Analysis in Fungi. Frontiers in Microbiology, 2020, 11, 574	5.7	18
318	BIN2 orchestrates platelet calcium signaling in thrombosis and thrombo-inflammation. <i>Journal of Clinical Investigation</i> , 2020 , 130, 6064-6079	15.9	10
317	Live and LargetiSuper-Resolution Optical Fluctuation Imaging (SOFI) and Expansion Microscopy (ExM) of Microtubule Remodelling by Rabies Virus P Protein. <i>Australian Journal of Chemistry</i> , 2020 , 73, 686	1.2	6
316	Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen. <i>Frontiers in Immunology</i> , 2020 , 11, 2117	8.4	5
315	Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy. ACS Nano, 2020, 14, 14190-1	4 2 607	14
314	Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. <i>Nature Communications</i> , 2020 , 11, 6173	17.4	16
313	Using Expansion Microscopy to Visualize and Characterize the Morphology of Mitochondrial Cristae. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 617	5.7	4
312	Multiple-Labeled Antibodies Behave Like Single Emitters in Photoswitching Buffer. <i>ACS Nano</i> , 2020 , 14, 12629-12641	16.7	9
311	Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. <i>Science Advances</i> , 2020 , 6, eaay7193	14.3	27
310	Detection of Developmental Forms and Secreted Effectors by Expansion Microscopy. <i>Frontiers in Cellular and Infection Microbiology</i> , 2019 , 9, 276	5.9	19
309	Super-Resolution Microscopy Reveals Local Accumulation of Plasma Membrane Gangliosides at Invasion Sites. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 194	5.7	6
308	Generation of site-distinct N-glycan variants for in vitro bioactivity testing. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 1017-1028	4.9	2
307	Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium. <i>Frontiers in Immunology</i> , 2019 , 10, 1294	8.4	8
306	Neisseria meningitidis Type IV Pili Trigger Ca-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. <i>Infection and Immunity</i> , 2019 , 87,	3.7	7
305	Registration and Visualization of Correlative Super-Resolution Microscopy Data. <i>Biophysical Journal</i> , 2019 , 116, 2073-2078	2.9	5
304	One-step synthesis and XPS investigations of chiral NHC-Au(0)/Au(i) nanoparticles. <i>Nanoscale</i> , 2019 , 11, 8327-8333	7.7	24

(2018-2019)

303	Silicon/Mesoporous Carbon (Si/MC) Derived from Phenolic Resin for High Energy Anode Materials for Li-ion Batteries: Role of HF Etching and Vinylene Carbonate (VC) Additive. <i>Batteries</i> , 2019 , 5, 11	5.7	1
302	Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T. <i>Nature Communications</i> , 2019 , 10, 3137	17.4	74
301	Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. <i>Communications Biology</i> , 2019 , 2, 261	6.7	47
300	Probing the ionic liquid/semiconductor interfaces over macroscopic distances using X-ray photoelectron spectroscopy. <i>Electrochimica Acta</i> , 2019 , 319, 456-461	6.7	2
299	FSP1 is a glutathione-independent ferroptosis suppressor. <i>Nature</i> , 2019 , 575, 693-698	50.4	663
298	Platelet lamellipodium formation is not required for thrombus formation and stability. <i>Blood</i> , 2019 , 134, 2318-2329	2.2	17
297	Imaging cellular ultrastructures using expansion microscopy (U-ExM). <i>Nature Methods</i> , 2019 , 16, 71-74	21.6	153
296	Super-resolution microscopy demystified. <i>Nature Cell Biology</i> , 2019 , 21, 72-84	23.4	409
295	Nanogels Enable Efficient miRNA Delivery and Target Gene Downregulation in Transfection-Resistant Multiple Myeloma Cells. <i>Biomacromolecules</i> , 2019 , 20, 916-926	6.9	11
294	The Neutral Sphingomyelinase 2 Is Required to Polarize and Sustain T Cell Receptor Signaling. <i>Frontiers in Immunology</i> , 2018 , 9, 815	8.4	7
293	Super-Resolution Optical Microscopy in Biology. <i>Microscopy and Microanalysis</i> , 2018 , 24, 340-341	0.5	
292	Carbon-based SILP catalysis for the selective hydrogenation of aldehydes using a well-defined Fe(II) PNP complex. <i>Catalysis Science and Technology</i> , 2018 , 8, 4812-4820	5.5	9
291	Nanostructure of DNA repair foci revealed by superresolution microscopy. FASEB Journal, 2018, 32, fj2	01579914	43 <u>/5</u> 2
290	Solar wind sputtering of wollastonite as a lunar analogue material Comparisons between experiments and simulations. <i>Icarus</i> , 2018 , 314, 98-105	3.8	18
289	Superresolution imaging of the synaptonemal complex. <i>Methods in Cell Biology</i> , 2018 , 145, 335-346	1.8	5
288			
287	Sharpening emitter localization in front of a tuned mirror. <i>Light: Science and Applications</i> , 2018 , 7, 99	16.7	5
286	Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging. <i>Angewandte Chemie</i> , 2018 , 130, 16602-16607	3.6	3

285	Bioorthogonal Click Chemistry Enables Site-specific Fluorescence Labeling of Functional NMDA Receptors for Super-Resolution Imaging. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16364-16	369 ⁴	30
284	Parallel experimental design and multivariate analysis provides efficient screening of cell culture media supplements to improve biosimilar product quality. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1448-1458	4.9	30
283	Localization-Based Super-Resolution Microscopy 2017 , 267-289		2
282	Cell culture media supplemented with raffinose reproducibly enhances high mannose glycan formation. <i>Journal of Biotechnology</i> , 2017 , 252, 32-42	3.7	25
281	3D subcellular localization with superresolution array tomography on ultrathin sections of various species. <i>Methods in Cell Biology</i> , 2017 , 140, 21-47	1.8	13
2 80	Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6131-6135	16.4	39
279	Characterization of Plasma Membrane Ceramides by Super-Resolution Microscopy. <i>Angewandte Chemie</i> , 2017 , 129, 6227-6231	3.6	5
278	Single-Molecule Localization Microscopy in Eukaryotes. <i>Chemical Reviews</i> , 2017 , 117, 7478-7509	68.1	209
277	Effect of oxygen plasma on nanomechanical silicon nitride resonators. <i>Applied Physics Letters</i> , 2017 , 111, 063103	3.4	12
276	Characterization of aluminum and titanium nitride films prepared by reactive sputtering under different poisoning conditions of target. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2017 , 35, 061507	2.9	2
275	Cyanine Conformational Restraint in the Far-Red Range. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12406-12409	16.4	75
274	CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells. <i>Scientific Reports</i> , 2017 , 7, 613	8 4.9	45
273	Separation of Nickelocene-Filled Single-Walled Carbon Nanotubes by Conductivity Type and Diameter. <i>Physica Status Solidi (B): Basic Research</i> , 2017 , 254, 1700178	1.3	7
272	The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 247, 600-609	6.7	48
271	OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors. <i>Oncogene</i> , 2017 , 36, 1911-1924	9.2	57
270	Photometry unlocks 3D information from 2D localization microscopy data. <i>Nature Methods</i> , 2017 , 14, 41-44	21.6	54
269	Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission. <i>Nature Chemical Biology</i> , 2017 , 13, 153-160	11.7	24
268	Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. <i>Scientific Reports</i> , 2017 , 7, 17627	4.9	27

(2016-2017)

267	Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging. <i>Nature Communications</i> , 2017 , 8, 1731	17.4	36
266	Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. <i>Frontiers in Cellular Neuroscience</i> , 2017 , 11, 307	6.1	18
265	Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities. <i>Oncotarget</i> , 2017 , 8, 45298-453	3₹0³	19
264	Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons. <i>ELife</i> , 2017 , 6,	8.9	77
263	3D mapping of subcellular structures with super-resolution array tomography 2016 , 1015-1016		
262	Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates. <i>Zeitschrift Fur Naturforschung - Section C Journal of Biosciences</i> , 2016 , 71, 347-354	1.7	6
261	Multi-target spectrally resolved fluorescence lifetime imaging microscopy. <i>Nature Methods</i> , 2016 , 13, 257-62	21.6	138
2 60	Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy. <i>Angewandte Chemie</i> , 2016 , 128, 1755-1759	3.6	32
259	The Author File: Markus Sauer. <i>Nature Methods</i> , 2016 , 13, 187	21.6	
258	Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. <i>Brain</i> , 2016 , 139, 365-79	11.2	44
257	Super-Resolution Imaging of Molecular Emission Spectra and Single Molecule Spectral Fluctuations. <i>PLoS ONE</i> , 2016 , 11, e0147506	3.7	46
256	Super-Resolution Imaging of Plasma Membrane Proteins with Click Chemistry. <i>Frontiers in Cell and Developmental Biology</i> , 2016 , 4, 98	5.7	16
255	The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni. <i>Nature Communications</i> , 2016 , 7, 11667	17.4	58
254	Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome. <i>Neurophotonics</i> , 2016 , 3, 041802	3.9	29
253	A Functionalized Sphingolipid Analogue for Studying Redistribution during Activation in Living T Cells. <i>Journal of Immunology</i> , 2016 , 196, 3951-62	5.3	22
252	Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1723-7	16.4	107
251	Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. <i>Acta Neuropathologica</i> , 2016 , 132, 93-110	14.3	13
250	Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 18316-18322	3.8	5

249	Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. <i>PLoS Genetics</i> , 2015 , 11, e1005140	6	29
248	Artifacts in single-molecule localization microscopy. <i>Histochemistry and Cell Biology</i> , 2015 , 144, 123-31	2.4	66
247	Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns. <i>ACS Nano</i> , 2015 , 9, 8122-30	16.7	18
246	Tailoring recombinant protein quality by rational media design. <i>Biotechnology Progress</i> , 2015 , 31, 615-2	9 2.8	57
245	Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. <i>Nanoscale</i> , 2015 , 7, 1383-91	7.7	47
244	Quantifying molecular colocalization in live cell fluorescence microscopy. <i>Journal of Biophotonics</i> , 2015 , 8, 124-32	3.1	4
243	On the bonding environment of phosphorus in purified doped single-walled carbon nanotubes. <i>Carbon</i> , 2015 , 81, 91-95	10.4	17
242	The potential of small molecules to modulate glycosylation by media design. <i>BMC Proceedings</i> , 2015 , 9,	2.3	1
241	Light-induced cell damage in live-cell super-resolution microscopy. <i>Scientific Reports</i> , 2015 , 5, 15348	4.9	306
240	Super-resolution microscopy of the synaptic active zone. <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 7	6.1	26
239	Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2485-2490	1.3	9
238	Tailoring the electronic properties of single-walled carbon nanotubes via filling with nickel acetylacetonate. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2546-2550	1.3	3
237	Comprehensive spectroscopic characterization of high purity metallicity-sorted single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2512-2518	1.3	6
236	Raman and XPS analyses of pristine and annealed N-doped double-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2558-2563	1.3	9
235	Super-resolution fluorescent methods: where next for super-resolution?. <i>Methods and Applications in Fluorescence</i> , 2015 , 3, 030201	3.1	1
234	Bruchpilot and Synaptotagmin collaborate to drive rapid glutamate release and active zone differentiation. <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 29	6.1	23
233	Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy. <i>PLoS ONE</i> , 2015 , 10, e0119990	3.7	16
232	Quantitative localization microscopy: effects of photophysics and labeling stoichiometry. <i>PLoS ONE</i> , 2015 , 10, e0127989	3.7	35

231	A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer. <i>Cancer Cell</i> , 2015 , 28, 743-757	24.3	91
230	Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes. <i>Nano Letters</i> , 2015 , 15, 1374-81	11.5	43
229	Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 2029-33	11.5	71
228	Eight years of single-molecule localization microscopy. <i>Histochemistry and Cell Biology</i> , 2014 , 141, 561-7	5 2.4	99
227	A blueprint for cost-efficient localization microscopy. <i>ChemPhysChem</i> , 2014 , 15, 651-4	3.2	38
226	Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx. <i>Biotechnology Journal</i> , 2014 , 9, 693-7	5.6	9
225	The chlamydial organism Simkania negevensis forms ER vacuole contact sites and inhibits ER-stress. <i>Cellular Microbiology</i> , 2014 , 16, 1224-43	3.9	42
224	PET-FCS: probing rapid structural fluctuations of proteins and nucleic acids by single-molecule fluorescence quenching. <i>Methods in Molecular Biology</i> , 2014 , 1076, 597-615	1.4	31
223	Super-resolution imaging of plasma membrane glycans. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10921-4	16.4	68
222	Timing protein assembly in neurons. <i>Chemistry and Biology</i> , 2014 , 21, 703-4		
221	Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. <i>Journal of Cell Science</i> , 2014 , 127, 4351-5	5.3	89
220	Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. <i>Nature Communications</i> , 2014 , 5, 4650	17.4	144
219	Revealing the adsorption mechanisms of nitroxides on ultrapure, metallicity-sorted carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 1375-83	16.7	27
218	High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons. <i>Frontiers in Cellular Neuroscience</i> , 2014 , 8, 107	6.1	52
217	Focus on Super-Resolution Imaging with Direct Stochastic Optical Reconstruction Microscopy (dSTORM). <i>Australian Journal of Chemistry</i> , 2014 , 67, 179	1.2	19
216	Differential interaction of tomosyn with syntaxin and SNAP25 depends on domains in the WD40 Epropeller core and determines its inhibitory activity. <i>Journal of Biological Chemistry</i> , 2014 , 289, 17087-9	9 ^{5.4}	24
215	Quantitatives imaging durch molekulare Aufl\(\bar{8}\)ung. BioSpektrum, 2014, 20, 618-621	0.1	
214	Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging. <i>Optics Express</i> , 2014 , 22, 10304-16	3.3	17

213	Super-Resolution Imaging of Plasma Membrane Glycans. <i>Angewandte Chemie</i> , 2014 , 126, 11101-11104	3.6	20
212	Probing Amyloid Aggregation and Morphology In Situ by Multiparameter Imaging and Super-Resolution Fluorescence Microscopy 2014 , 105-120		3
211	How to switch a fluorophore: from undesired blinking to controlled photoswitching. <i>Chemical Society Reviews</i> , 2014 , 43, 1076-87	58.5	128
210	Data Analysis for Single-Molecule Localization Microscopy. <i>Neuromethods</i> , 2014 , 113-132	0.4	
209	Investigating infection processes with a workflow from organic chemistry to biophysics: the combination of metabolic glycoengineering, super-resolution fluorescence imaging and proteomics. <i>Expert Review of Proteomics</i> , 2013 , 10, 25-31	4.2	7
208	Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. <i>Carbon</i> , 2013 , 59, 237-245	10.4	27
207	A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants. <i>Molecular Plant</i> , 2013 , 6, 1518-30	14.4	16
206	Methylene blue- and thiol-based oxygen depletion for super-resolution imaging. <i>Analytical Chemistry</i> , 2013 , 85, 3393-400	7.8	43
205	Permeation through phospholipid bilayers, skin-cell penetration, plasma stability, and CD spectra of <code>Hand Ebligoproline</code> derivatives. <i>Chemistry and Biodiversity</i> , 2013 , 10, 1-38	2.5	24
204	Investigating cellular structures at the nanoscale with organic fluorophores. <i>Chemistry and Biology</i> , 2013 , 20, 8-18		44
203	Fluorescent Probes (Fluorescence Standards, Green Protein Technology) 2013, 207		
202	Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes. <i>PLoS ONE</i> , 2013 , 8, e58049	3.7	17
201	Long-term follow-up of children conditioned with Treosulfan: German and Austrian experience. <i>Bone Marrow Transplantation</i> , 2013 , 48, 491-501	4.4	29
200	Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. <i>ACS Nano</i> , 2013 , 7, 556-65	16.7	95
199	Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes. <i>Biochimica Et Biophysica Acta - Biomembranes</i> , 2013 , 1828, 699-707	3.8	18
198	Localization microscopy coming of age: from concepts to biological impact. <i>Journal of Cell Science</i> , 2013 , 126, 3505-13	5.3	77
197	Highly rapid amplification-free and quantitative DNA imaging assay. <i>Scientific Reports</i> , 2013 , 3, 1852	4.9	17
196	Environmental stability of ferrocene filled in purely metallic single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2599-2604	1.3	5

(2011-2013)

195	Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2013 , 250, 2575-2580	1.3	23
194	Correlative photoactivated localization and scanning electron microscopy. <i>PLoS ONE</i> , 2013 , 8, e77209	3.7	60
193	Elements of transcriptional machinery are compatible among plants and mammals. <i>PLoS ONE</i> , 2013 , 8, e53737	3.7	5
192	rapidSTORM: accurate, fast open-source software for localization microscopy. <i>Nature Methods</i> , 2012 , 9, 1040-1	21.6	265
191	Superresolution optical fluctuation imaging (SOFI). <i>Advances in Experimental Medicine and Biology</i> , 2012 , 733, 17-21	3.6	29
190	In situ filling of metallic single-walled carbon nanotubes with ferrocene molecules. <i>Physica Status Solidi (B): Basic Research</i> , 2012 , 249, 2408-2411	1.3	14
189	A Practical Guide to dSTORM: Super-Resolution Imaging with Standard Fluorescent Probes. <i>Springer Series on Fluorescence</i> , 2012 , 65-84	0.5	0
188	Correlation-matrix analysis of two-color coincidence events in single-molecule fluorescence experiments. <i>Analytical Chemistry</i> , 2012 , 84, 2729-36	7.8	10
187	Live-cell super-resolution imaging with synthetic fluorophores. <i>Annual Review of Physical Chemistry</i> , 2012 , 63, 519-40	15.7	218
186	Dielectric analysis and multi-cell electrofusion of the yeast Pichia pastoris for electrophysiological studies. <i>Journal of Membrane Biology</i> , 2012 , 245, 815-26	2.3	6
185	Live-cell super-resolution imaging goes multicolor. <i>ChemBioChem</i> , 2012 , 13, 1861-3	3.8	18
184	Follow-up to paper by S. Wolter, M. Sch E tpelz, M. Tscherepanow, S. van de Linde, M. Heilemann and M. Sauer, entitled Real-time computation of subdiffraction-resolution fluorescence images. <i>Journal of Microscopy</i> , 2012 , 245, 109	1.9	3
183	Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. <i>Journal of Cell Science</i> , 2012 , 125, 570-5	5.3	224
182	Fluorescence localization microscopy: The transition from concept to biological research tool. <i>Communicative and Integrative Biology</i> , 2012 , 5, 345-9	1.7	6
181	Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. <i>Journal of Biological Chemistry</i> , 2012 , 287, 27158-67	5.4	102
180	Quantitative single-molecule microscopy reveals that CENP-A(Cnp1) deposition occurs during G2 in fission yeast. <i>Open Biology</i> , 2012 , 2, 120078	7	114
179	Measuring localization performance of super-resolution algorithms on very active samples. <i>Optics Express</i> , 2011 , 19, 7020-33	3.3	66
178	Single-molecule Photoswitching and Localization. <i>Australian Journal of Chemistry</i> , 2011 , 64, 503	1.2	18

177	Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants. <i>Traffic</i> , 2011 , 12, 693-702	5.7	33
176	Live-cell dSTORM with SNAP-tag fusion proteins. <i>Nature Methods</i> , 2011 , 8, 7-9	21.6	211
175	Direct stochastic optical reconstruction microscopy with standard fluorescent probes. <i>Nature Protocols</i> , 2011 , 6, 991-1009	18.8	690
174	Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging. <i>Photochemical and Photobiological Sciences</i> , 2011 , 10, 499-506	4.2	159
173	Basic Principles of Fluorescence Spectroscopy 2011 , 1-30		21
172	Fluorophores and Fluorescent Labels 2011 , 31-60		2
171	Fluorophore Labeling for Single-Molecule Fluorescence Spectroscopy (SMFS) 2011 , 61-83		
170	Fluorophore Selection for Single-Molecule Fluorescence Spectroscopy (SMFS) and Photobleaching Pathways 2011 , 85-92		
169	Fluorescence Correlation Spectroscopy 2011 , 93-146		3
168	Excited State Energy Transfer 2011 , 147-188		
167	Photoinduced Electron Transfer (PET) Reactions 2011 , 189-218		1
166	Super-Resolution Fluorescence Imaging 2011 , 219-240		
165	Conformational flexibility of glycosylated peptides. ChemPhysChem, 2011, 12, 2907-11	3.2	8
164	Kinetic studies on visible-light-switchable photochromic fluorophores based on diarylethenes. <i>Photochemical and Photobiological Sciences</i> , 2011 , 10, 1488-95	4.2	10
163	Dimer formation of organic fluorophores reports on biomolecular dynamics under denaturing conditions. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 12874-82	3.6	11
162	In situ measurements of the formation and morphology of intracellular Eamyloid fibrils by super-resolution fluorescence imaging. <i>Journal of the American Chemical Society</i> , 2011 , 133, 12902-5	16.4	129
161	Cross-linking of DNA through HMGA1 suggests a DNA scaffold. <i>Nucleic Acids Research</i> , 2011 , 39, 7124-3	3 20.1	18
160	Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4822-7	11.5	90

159	A reliable and sensitive bead-based fluorescence assay for identification of nucleic acid sequences 2011 ,		1	
158	2011,		166	
157	Real-time computation of subdiffraction-resolution fluorescence images. <i>Journal of Microscopy</i> , 2010 , 237, 12-22	1.9	195	
156	Live-cell super-resolution imaging with trimethoprim conjugates. <i>Nature Methods</i> , 2010 , 7, 717-9	21.6	274	
155	Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains. <i>PLoS Computational Biology</i> , 2010 , 6, e1000645	5	40	
154	dSTORM: real-time subdiffraction-resolution fluorescence imaging with organic fluorophores 2010 ,		5	
153	Hydrodynamic properties of human adhesion/growth-regulatory galectins studied by fluorescence correlation spectroscopy. <i>Biophysical Journal</i> , 2010 , 98, 3044-53	2.9	37	
152	Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3156-3159	6.4	33	
151	DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. <i>Molecular Cell</i> , 2010 , 38, 356-68	17.6	69	
150	Spiropyrans as molecular optical switches. <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 213-20	4.2	61	
149	An Augmented Reality Supported Control System for Remote Operation and Monitoring of an Industrial Work Cell. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2010 , 43, 83-88		2	
148	Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. <i>ChemPhysChem</i> , 2010 , 11, 836-40	3.2	38	
147	Janus-Nanomembranen: eine allgemein einsetzbare Basis fliChemie in zwei Dimensionen. <i>Angewandte Chemie</i> , 2010 , 122, 8671-8675	3.6	11	
146	Superresolution Optical Fluctuation Imaging with Organic Dyes. <i>Angewandte Chemie</i> , 2010 , 122, 9631-9	9638	15	
145	Janus nanomembranes: a generic platform for chemistry in two dimensions. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8493-7	16.4	80	
144	Superresolution optical fluctuation imaging with organic dyes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9441-3	16.4	81	
143	Fluorescently labeled 1 nm thin nanomembranes. Journal of Biotechnology, 2010, 149, 267-71	3.7	8	
142	The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging. <i>Journal of Biotechnology</i> , 2010 , 149, 260-6	3.7	110	

141	In vivo analysis of the 2-Cys peroxiredoxin oligomeric state by two-step FRET. <i>Journal of Biotechnology</i> , 2010 , 149, 272-9	3.7	21
140	Single-molecule STED microscopy with photostable organic fluorophores. <i>Small</i> , 2010 , 6, 1379-84	11	95
139	Fluorophores: Single-Molecule STED Microscopy with Photostable Organic Fluorophores (Small 13/2010). <i>Small</i> , 2010 , 6, n/a-n/a	11	1
138	Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. <i>ChemPhysChem</i> , 2009 , 10, 1389-98	3.2	358
137	Photoswitches: Key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. <i>Laser and Photonics Reviews</i> , 2009 , 3, 180-202	8.3	218
136	HochauflBende Mikroskopie mit kleinen organischen Farbstoffen. <i>Angewandte Chemie</i> , 2009 , 121, 7036	-3641	38
135	Super-resolution imaging with small organic fluorophores. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6903-8	16.4	330
134	Quantum dot triexciton imaging with three-dimensional subdiffraction resolution. <i>Nano Letters</i> , 2009 , 9, 2466-70	11.5	27
133	Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. <i>Photochemical and Photobiological Sciences</i> , 2009 , 8, 465-9	4.2	104
132	Mobile Robot Teleoperation via Wireless Multihop Networks - Parameter Tuning of Protocols and Real World Application Scenarios. <i>Lecture Notes in Electrical Engineering</i> , 2009 , 139-152	0.2	4
131	Integrating Teams of Mobile Robots in Wireless Ad-Hoc Networks. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2009 , 42, 111-116		0
130	p73 poses a barrier to malignant transformation by limiting anchorage-independent growth. <i>EMBO Journal</i> , 2008 , 27, 792-803	13	44
129	Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. <i>Journal of Structural Biology</i> , 2008 , 164, 250-4	3.4	86
128	Challenges in realizing ad-hoc networks based on wireless LAN with mobile robots 2008,		4
127	Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9507-13	16.4	48
126	Design and evaluation of an user interface for the coordination of a group of mobile robots 2008,		3
125	C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. <i>Nucleic Acids Research</i> , 2008 , 36, 1900-12	20.1	45
124	Photoswitching microscopy with standard fluorophores. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 93, 725-731	1.9	90

123	Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. <i>BMC Cell Biology</i> , 2008 , 9, 28		21
122	Fluorescent proteins for single-molecule fluorescence applications. <i>Journal of Biophotonics</i> , 2008 , 1, 74-82	3.1	46
121	A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5465-9	16.4	463
120	Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 6172-6	16.4	1341
119	Ein System aus Reduktions- und Oxidationsmittel verringert Photobleichen und Blinken von Fluoreszenzfarbstoffen. <i>Angewandte Chemie</i> , 2008 , 120, 5545-5550	3.6	53
118	Fluoreszenzmikroskopie unterhalb der optischen Aufl\(\bar{\text{U}}\)ungsgrenze mit konventionellen Fluoreszenzsonden. <i>Angewandte Chemie</i> , 2008 , 120, 6266-6271	3.6	94
117	Fluorescence of single molecules in polymer films: sensitivity of blinking to local environment. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 6987-91	3.4	85
116	Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range. <i>Analytical Chemistry</i> , 2007 , 79, 7367-75	7.8	29
115	Polymer properties of polythymine as revealed by translational diffusion. <i>Biophysical Journal</i> , 2007 , 93, 1224-34	2.9	61
114	A highly sensitive particle agglutination assay for the detection of P53 autoantibodies in patients with lung cancer. <i>Cancer</i> , 2007 , 110, 2502-6	6.4	3
114		6.4	2
, in the second	with lung cancer. <i>Cancer</i> , 2007 , 110, 2502-6	6.4	
113	with lung cancer. <i>Cancer</i> , 2007 , 110, 2502-6 Molecular Optical Switches and Waveguides. <i>Optik & Photonik</i> , 2007 , 2, 45-48 Optical switches: key molecules for improved fluorescence imaging and tracking with high optical	6.4	
113	with lung cancer. <i>Cancer</i> , 2007 , 110, 2502-6 Molecular Optical Switches and Waveguides. <i>Optik & Photonik</i> , 2007 , 2, 45-48 Optical switches: key molecules for improved fluorescence imaging and tracking with high optical resolution 2007 , 6633, 13	6.4	2
113 112 111	with lung cancer. <i>Cancer</i> , 2007 , 110, 2502-6 Molecular Optical Switches and Waveguides. <i>Optik & Photonik</i> , 2007 , 2, 45-48 Optical switches: key molecules for improved fluorescence imaging and tracking with high optical resolution 2007 , 6633, 13 Toward ultra-stable fluorescent dyes for single-molecule spectroscopy 2007 , 6633, 405 Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. <i>Proceedings of the National Academy of</i>		2
113 112 111 110	with lung cancer. Cancer, 2007, 110, 2502-6 Molecular Optical Switches and Waveguides. Optik & Photonik, 2007, 2, 45-48 Optical switches: key molecules for improved fluorescence imaging and tracking with high optical resolution 2007, 6633, 13 Toward ultra-stable fluorescent dyes for single-molecule spectroscopy 2007, 6633, 405 Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17400-5 Analyzing the influence of contact-induced quenching processes on Förster resonance energy		2 107
113 112 111 110 109	Molecular Optical Switches and Waveguides. <i>Optik & Photonik</i> , 2007 , 2, 45-48 Optical switches: key molecules for improved fluorescence imaging and tracking with high optical resolution 2007 , 6633, 13 Toward ultra-stable fluorescent dyes for single-molecule spectroscopy 2007 , 6633, 405 Probing polyproline structure and dynamics by photoinduced electron transfer provides evidence for deviations from a regular polyproline type II helix. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 17400-5 Analyzing the influence of contact-induced quenching processes on Förster resonance energy transfer 2007 ,		2 107 1

105	p53 family members in myogenic differentiation and rhabdomyosarcoma development. <i>Cancer Cell</i> , 2006 , 10, 281-93	24.3	97
104	Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy. <i>Nucleic Acids Research</i> , 2006 , 34, e90	20.1	18
103	The initial step of DNA hairpin folding: a kinetic analysis using fluorescence correlation spectroscopy. <i>Nucleic Acids Research</i> , 2006 , 34, 2516-27	20.1	117
102	DNA-based molecular wires: multiple emission pathways of individual constructs. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 26349-53	3.4	43
101	Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16864-75	16.4	86
100	UV fluorescence lifetime imaging microscopy: a label-free method for detection and quantification of protein interactions. <i>Analytical Chemistry</i> , 2006 , 78, 663-9	7.8	29
99	Radiative and nonradiative rate fluctuations of single colloidal semiconductor nanocrystals. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5174-8	3.4	46
98	Novel Singly Labelled Probes for Identification of Microorganisms, Detection of Antibiotic Resistance Genes and Mutations, and Tumor Diagnosis (SMART PROBES) 2006 , 167-230		5
97	Application of multiline two-photon microscopy to functional in vivo imaging. <i>Journal of Neuroscience Methods</i> , 2006 , 151, 276-86	3	57
96	Exploring life by single-molecule fluorescence spectroscopy. Molecular characteristics hidden by ensemble experiments can be revealed by fluorescence. <i>Analytical Chemistry</i> , 2005 , 77, 179A-185A	7.8	19
95	Species-specific identification of mycobacterial 16S rRNA PCR amplicons using smart probes. <i>Analytical Chemistry</i> , 2005 , 77, 7195-203	7.8	52
94	The relative role of the T-domain and flanking sequences for developmental control and transcriptional regulation in protein chimeras of Drosophila OMB and ORG-1. <i>Mechanisms of Development</i> , 2005 , 122, 81-96	1.7	19
93	Self-quenching DNA probes based on dye dimerization for identification of mycobacteria. <i>International Journal of Environmental Analytical Chemistry</i> , 2005 , 85, 625-637	1.8	9
92	Carbocyanine dyes as efficient reversible single-molecule optical switch. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3801-6	16.4	341
91	Counting single molecules in living cells at high resolution by spectrally resolved fluorescence lifetime imaging microscopy (SFLIM) and coincidence analysis 2005 , 5699, 141		2
90	Monitoring Antibody Binding Events in Homogeneous Solution by Single-Molecule Fluorescence Spectroscopy. <i>Zeitschrift Fur Physikalische Chemie</i> , 2005 , 219, 665-678	3.1	8
89	Design of molecular photonic wires based on multistep electronic excitation transfer. <i>ChemPhysChem</i> , 2005 , 6, 217-22	3.2	69
88	High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. <i>ChemPhysChem</i> , 2005 , 6, 949-55	3.2	22

87	A close look at fluorescence quenching of organic dyes by tryptophan. ChemPhysChem, 2005, 6, 2277-85	53.2	138
86	Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2642-2671	16.4	218
85	Cover Picture: Branching Out of Single-Molecule Fluorescence Spectroscopy: Challenges for Chemistry and Influence on Biology (Angew. Chem. Int. Ed. 18/2005). <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2613-2613	16.4	1
84	Neue Wege in der Einzelmolekli-Fluoreszenzspektroskopie: Herausforderungen fildie Chemie und Einfluss auf die Biologie. <i>Angewandte Chemie</i> , 2005 , 117, 2698-2728	3.6	44
83	Titelbild: Neue Wege in der Einzelmolekl Fluoreszenzspektroskopie: Herausforderungen fildie Chemie und Einfluss auf die Biologie (Angew. Chem. 18/2005). <i>Angewandte Chemie</i> , 2005 , 117, 2669-26	6 3 6	
82	A microscopic view of miniprotein folding: enhanced folding efficiency through formation of an intermediate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16650-5	11.5	167
81	Defocused imaging of quantum-dot angular distribution of radiation. <i>Applied Physics Letters</i> , 2005 , 87, 101103	3.4	47
80	Reversible molecular photoswitches: a key technology for nanoscience and fluorescence imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 9433-4	11.5	86
79	Single Photon Emission from a Dendrimer Containing Eight Perylene Diimide Chromophores. <i>Australian Journal of Chemistry</i> , 2004 , 57, 1169	1.2	11
78	Subcellular distribution of the V-ATPase complex in plant cells, and in vivo localisation of the 100 kDa subunit VHA-a within the complex. <i>BMC Cell Biology</i> , 2004 , 5, 29		37
77	Highly sensitive protease assay using fluorescence quenching of peptide probes based on photoinduced electron transfer. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 3798-801	16.4	44
76	Chemical and biological investigations of beta-oligoarginines. <i>Chemistry and Biodiversity</i> , 2004 , 1, 65-97	2.5	65
75	Ein hochempfindliches Nachweisverfahren fil Proteasen basierend auf Fluoreszenzlschung von Peptidsonden durch photoinduzierten Elektronentransfer. <i>Angewandte Chemie</i> , 2004 , 116, 3886-3890	3.6	7
74	Higher-excited-state photophysical pathways in multichromophoric systems revealed by single-molecule fluorescence spectroscopy. <i>ChemPhysChem</i> , 2004 , 5, 1786-90	3.2	68
73	Accurate delivery of single biomolecules by polyethylene glycol coated submicrometer pipettes. <i>Chemical Physics</i> , 2004 , 301, 105-110	2.3	6
72	Multichromophoric Dendrimers as Single-Photon Sources: A Single-Molecule Study. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16686-16696	3.4	69
71	Implementation of Neural Networks for the Identification of Single Molecules. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 4799-4804	2.8	4
70	Multistep energy transfer in single molecular photonic wires. <i>Journal of the American Chemical Society</i> , 2004 , 126, 6514-5	16.4	179

69	Using photoinduced charge transfer reactions to study conformational dynamics of biopolymers at the single-molecule level. <i>Current Pharmaceutical Biotechnology</i> , 2004 , 5, 285-98	2.6	46
68	Controlled three-dimensional immobilization of biomolecules on chemically patterned surfaces. <i>Journal of Biotechnology</i> , 2004 , 112, 97-107	3.7	54
67	Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells. Journal of Biotechnology, 2004 , 112, 165-75	3.7	52
66	The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. <i>Journal of Biotechnology</i> , 2004 , 112, 151-64	3.7	7
65	Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 13146-51	11.5	152
64	Ensemble and single-molecule fluorescence spectroscopic study of the binding modes of the bis-benzimidazole derivative Hoechst 33258 with DNA. <i>Nucleic Acids Research</i> , 2003 , 31, 2178-86	20.1	47
63	Excited state processes in individual multichromophoric systems 2003 , 4962, 1		
62	Molecular mechanics force field parameterization of the fluorescent probe rhodamine 6G using automated frequency matching. <i>Journal of Computational Chemistry</i> , 2003 , 24, 632-9	3.5	31
61	Auf photoinduzierter intramolekularer Ladungstrennung basierende einzelmoleklempfindliche Fluoreszenzsensoren. <i>Angewandte Chemie</i> , 2003 , 115, 1834-1837	3.6	13
60	Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 1790-3	16.4	116
59	Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation. <i>Journal of the American Chemical Society</i> , 2003 , 125, 14564-72	16.4	128
58	A Single-Molecule Sensitive DNA Hairpin System Based on Intramolecular Electron Transfer. <i>Nano Letters</i> , 2003 , 3, 979-982	11.5	78
57	Direct Observation of Collective Blinking and Energy Transfer in a Bichromophoric System. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 323-327	2.8	59
56	Measurement of submicrosecond intramolecular contact formation in peptides at the single-molecule level. <i>Journal of the American Chemical Society</i> , 2003 , 125, 5324-30	16.4	132
55	Probing FEster Type Energy Pathways in a First Generation Rigid Dendrimer Bearing Two Perylene Imide Chromophores. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 6920-6931	2.8	113
54	Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan. <i>Bioconjugate Chemistry</i> , 2003 , 14, 1133-9	6.3	262
53	Spectroscopic study and evaluation of red-absorbing fluorescent dyes. <i>Bioconjugate Chemistry</i> , 2003 , 14, 195-204	6.3	206
52	Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. <i>Analytical Chemistry</i> , 2003 , 75, 2147-53	7.8	74

(2000-2003)

2003 , 107, 43-52	2.8	86
Photoinduced Electron Transfer between Fluorescent Dyes and Guanosine Residues in DNA-Hairpins. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7957-7964	3.4	201
Cellular uptake studies with beta-peptides. <i>ChemBioChem</i> , 2002 , 3, 257-9	3.8	126
Detektion einzelner p53-Autoantikiper mit fluoreszenzgelschten Peptid-Sonden. <i>Angewandte Chemie</i> , 2002 , 114, 4964-4968	3.6	13
Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 4769-73	16.4	51
Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. <i>Analytical Chemistry</i> , 2002 , 74, 5342-9	7.8	116
High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. <i>Analytical Chemistry</i> , 2002 , 74, 3511-7	7.8	92
Antibunching in the emission of a single tetrachromophoric dendritic system. <i>Journal of the American Chemical Society</i> , 2002 , 124, 14310-1	16.4	114
Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. <i>Reviews in Molecular Biotechnology</i> , 2002 , 82, 211-31		110
Time-varying photon probability distribution of individual molecules at room temperature. <i>Chemical Physics Letters</i> , 2001 , 345, 252-258	2.5	48
Electron induced chemical nanolithography with self-assembled monolayers. <i>Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena</i> , 2001 , 19, 2732		56
Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. Journal of Biotechnology, 2001 , 86, 181-201	3.7	82
Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001, 26, 825-7	3	286
Photophysical Dynamics of Single Molecules Studied by Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy (SFLIM). <i>Journal of Physical Chemistry A</i> , 2001 , 105, 7989-8003	2.8	109
On the Structure of Poly(3-hydroxybutanoic acid) in Solution and in Phospholipid Bilayers. Circular Dichroism and Fluorescence Spectroscopy with Oligo(3-hydroxybutanoic acid) Derivatives. <i>Macromolecules</i> , 2001 , 34, 7042-7048	5.5	23
Optimal Algorithm for Single-Molecule Identification with Time-Correlated Single-Photon Counting. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 48-53	2.8	39
7-Substituted 7-Deaza-2?-deoxyadenosines and 8-Aza-7-deaza-2?-deoxyadenosines: Fluorescence of DNA-Base Analogues Induced by the 7-Alkynyl Side Chain. <i>Helvetica Chimica Acta</i> , 2000 , 83, 910-927	2	52
Substituent Effects on Redox Properties and Photoinduced Electron Transfer in Isoxazolo-Fullerenes 2000 , 2000, 455-465		28
	DNA-Hairpins. Journal of Physical Chemistry B, 2003, 107, 7957-7964 Cellular uptake studies with beta-peptides. ChemBioChem, 2002, 3, 257-9 Detektion einzelner p53-Autoantikiper mit fluoreszenzgelischten Peptid-Sonden. Angewandte Chemie, 2002, 114, 4964-4968 Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. Angewandte Chemie - International Edition, 2002, 41, 4769-73 Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. Analytical Chemistry, 2002, 74, 5342-9 High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Analytical Chemistry, 2002, 74, 3511-7 Antibunching in the emission of a single tetrachromophoric dendritic system. Journal of the American Chemical Society, 2002, 124, 14310-1 Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Reviews in Molecular Biotechnology, 2002, 82, 211-31 Time-varying photon probability distribution of individual molecules at room temperature. Chemical Physics Letters, 2001, 345, 252-258 Electron induced chemical nanolithography with self-assembled monolayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2732 Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. Journal of Biotechnology, 2001, 86, 181-201 Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001, 26, 825-7 Photophysical Dynamics of Single Molecules Studied by Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy (SFLIM). Journal of Physical Chemistry A, 2001, 105, 7989-8003 On the Structure of Poly(3-hydroxybutanoic acid) in Solution and in Phospholipid Bilayers. Circular Dichroism and Fluorescence Spectroscopy with Oligo(3-hydroxybutanoic acid) Der	Cellular uptake studies with beta-peptides. ChemBioChem, 2002, 3, 257-9 3.8 Detektion einzelner p53-Autoantikitper mit fluoreszenzgel&chten Peptid-Sonden. Angewandte Chemie, 2002, 114, 4964-4968 Detection of individual p53-autoantikitper mit fluoreszenzgel&chten Peptid-Sonden. Angewandte Chemie, 2002, 114, 4964-4968 Detection of individual p53-autoantibodies by using quenched peptide-based molecular probes. Angewandte Chemie - International Edition, 2002, 41, 4769-73 Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons. Analytical Chemistry, 2002, 74, 5342-9 High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Analytical Chemistry, 2002, 74, 3511-7 Antibunching in the emission of a single tetrachromophoric dendritic system. Journal of the American Chemical Society, 2002, 124, 14310-1 Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Reviews in Molecular Biotechnology, 2002, 82, 211-31 Time-varying photon probability distribution of individual molecules at room temperature. Chemical Physics Letters, 2001, 345, 252-258 Electron induced chemical nanolithography with self-assembled monolayers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2732 Single molecule DNA sequencing in submicrometer channels: state of the art and future prospects. Journal of Biotechnology, 2001, 86, 181-201 Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001, 26, 825-7 3.7 Photophysical Dynamics of Single Molecules Studied by Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy (SFLIM). Journal of Physical Chemistry A, 2001, 105, 7989-8003 On the Structure of Poly(3-hydroxybutanoic acid) in Solution and in Phospholipid Bilayers. Circular Dichroism and

33	Confocal Fluorescence Lifetime Imaging Microscopy (FLIM) at the Single Molecule Level. <i>Single Molecules</i> , 2000 , 1, 215-223		57
32	Capillary array scanner for time-resolved detection and identification of fluorescently labelled DNA fragments. <i>Journal of Chromatography A</i> , 2000 , 871, 299-310	4.5	25
31	Identification of single fluorescently labelled mononucleotide molecules in solution by spectrally resolved time-correlated single-photon counting. <i>Applied Physics B: Lasers and Optics</i> , 2000 , 71, 765-771	1.9	29
30	Probes for detection of specific DNA sequences at the single-molecule level. <i>Analytical Chemistry</i> , 2000 , 72, 3717-24	7.8	235
29	Confocal Fluorescence Lifetime Imaging Microscopy (FLIM) at the Single Molecule Level 2000 , 1, 215		3
28	Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC). <i>Review of Scientific Instruments</i> , 1999 , 70, 1835-1841	1.7	89
27	Detection and identification of single dye labeled mononucleotide molecules released from an optical fiber in a microcapillary: First steps towards a new single molecule DNA sequencing technique. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2471-2477	3.6	40
26	Dynamics of the electron transfer reaction between an oxazine dye and DNA oligonucleotides monitored on the single-molecule level. <i>Chemical Physics Letters</i> , 1998 , 284, 153-163	2.5	75
25	Single-molecule counting and identification in a microcapillary. Chemical Physics Letters, 1998, 286, 457-	465	65
24	Time-resolved identification of individual mononucleotide molecules in aqueous solution with pulsed semiconductor lasers. <i>Bioimaging</i> , 1998 , 6, 14-24		49
23	Multiplex dye DNA sequencing in capillary gel electrophoresis by diode laser-based time-resolved fluorescence detection. <i>Analytical Chemistry</i> , 1998 , 70, 4771-9	7.8	108
22	Synthesis of 2?,3?-Didehydro-2?,3?-dideoxyisoinosine and Oxidation of Fluorescent 2-Hydroxypurine Nucleosides by Xanthine Oxidase. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 1998 , 17, 39-52	1.4	9
21	Diode-laser-based time-resolved detection and identification of individual mononucleotide molecules in aqueous solution 1997 ,		4
20	Determination of the diffusion coefficient of dye in solution at single molecule level. <i>Chemical Physics Letters</i> , 1997 , 269, 54-58	2.5	19
19	Efficient DNA sequencing with a pulsed semiconductor laser and a new fluorescent dye set. <i>Chemical Physics Letters</i> , 1997 , 279, 282-288	2.5	15
18	Time-resolved DNA identification in capillary gel electrophoresis with semiconductor lasers 1997,		3
17	Diode laser based detection of single molecules in solutions. <i>Chemical Physics Letters</i> , 1996 , 254, 223-22	2 8 .5	41
16	Time-resolved identification of single molecules in solution with a pulsed semiconductor diode laser. <i>Chemical Physics Letters</i> , 1996 , 262, 716-722	2.5	56

LIST OF PUBLICATIONS

15	Detection and characterization of single molecules in aqueous solution. <i>Applied Physics B: Lasers and Optics</i> , 1996 , 63, 517-523)	44
14	Finding the conformation of organic molecules with genetic algorithms. <i>Lecture Notes in Computer Science</i> , 1996 , 971-981)	O
13	New fluorescent dyes in the red region for biodiagnostics. <i>Journal of Fluorescence</i> , 1995 , 5, 247-61 2.4	-	118
12	Simultaneous antigen detection using multiplex dyes. <i>Journal of Fluorescence</i> , 1994 , 4, 111-5 2.4		11
11	Sensitive fluorescence detection using laser diodes and multiplex dyes. <i>Journal of Luminescence</i> , 1994, 60-61, 511-514	•	8
10	Sensitive fluorescence detection in capillary electrophoresis using laser diodes and multiplex dyes. <i>Journal of Luminescence</i> , 1994 , 62, 101-108		26
9	Design of Multiplex Dyes. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1993, 97, 1734-1737		14
8	New fluorescent labels for time-resolved detection of biomolecules. <i>Journal of Fluorescence</i> , 1993 , 3, 131-9		30
7	Targetable Conformationally Restricted Cyanines Enable Photon-Count-Limited Applications**. Angewandte Chemie, 3.6		1
6	Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLN	1)	2
5	Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy		2
4	Active zone compaction in presynaptic homeostatic potentiation		4
3	Super-Resolution Imaging by Dual Iterative Structured Illumination Microscopy		1
2	Bioorthogonal labeling of transmembrane proteins with non-canonical amino acids allows access to masked epitopes in live neurons		2
1	Assessing LiF as coating material for Li metal electrodes. <i>Journal of Applied Electrochemistry</i> ,1 2.6)	