List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3205641/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhodium(<scp>i</scp>)-catalyzed C–S bond formation <i>via</i> enantioselective carbenoid S–H insertion: catalytic asymmetric synthesis of α-thioesters. Organic Chemistry Frontiers, 2022, 9, 3467-3472.	4.5	11
2	Rhodium(I) Carbeneâ€Promoted Enantioselective Câ^'H Functionalization of Simple Unprotected Indoles, Pyrroles and Heteroanalogues: New Mechanistic Insights. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
3	Regiospecific and Enantioselective Arylvinylcarbene Insertion of a C–H Bond of Aniline Derivatives Enabled by a Rh(I)-Diene Catalyst. Journal of the American Chemical Society, 2021, 143, 2608-2619.	13.7	61
4	Transition metal-catalyzed asymmetric carbene insertion for synthesis of chiral amines. Chinese Science Bulletin, 2021, 66, 3251-3260.	0.7	2
5	Facile synthesis of coumaronochromones through palladium-catalyzed intramolecular cross dehydrogenative coupling. Tetrahedron, 2021, 85, 132048.	1.9	2
6	Rhodium(I)â€Catalyzed Enantioselective C(sp ³)—H Functionalization <i>via</i> <scp>Carbeneâ€Induced</scp> Asymmetric Intermolecular C—H Insertion ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1911-1915.	4.9	18
7	A new efficient method for asymmetric synthesis of prostaglandins. Chinese Science Bulletin, 2021, 66, 3645-3648.	0.7	0
8	Stereodivergent Synthesis of Enantioenriched 2,3-Disubstituted Dihydrobenzofurans via a One-Pot C–H Functionalization/Oxa-Michael Addition Cascade. Journal of the American Chemical Society, 2021, 143, 8583-8589.	13.7	74
9	Decennial celebration of SUSTech Chemistry: A fresh start for decades of future excellence. Chinese Science Bulletin, 2021, 66, 3227-3229.	0.7	0
10	Catalytic asymmetric synthesis of chiral tetraarylmethanes. Chinese Science Bulletin, 2021, 66, 2085-2087.	0.7	0
11	Water as a Direct Proton Source for Asymmetric Hydroarylation Catalyzed by a Rh(I)–Diene: Access to Nonproteinogenic β2/γ2/Î′2-Amino Acid Derivatives. Organic Letters, 2021, 23, 571-577.	4.6	9
12	Applications of Asymmetric Petasis Reaction in the Synthesis of Chiral Amines. Acta Chimica Sinica, 2021, 79, 1345.	1.4	2
13	Palladiumâ€Catalyzed Highly Enantioselective Arylation of Cyclic <i>N</i> â€Sulfonyl αâ€Ketimino Esters towards the Synthesis of I±â€Quaternary Chiral Amino Acid Derivatives. ChemCatChem, 2020, 12, 1129-1133.	3.7	7
14	The enantioselective construction of trifluoromethylated quaternary stereocenters <i>via</i> the Rh-catalyzed asymmetric dehydrated arylation of unprotected hemiaminals. Organic Chemistry Frontiers, 2020, 7, 340-344.	4.5	5
15	Development of Bisindole-Substituted Aminopyrazoles as Novel GSK-3Î ² Inhibitors with Suppressive Effects against Microglial Inflammation and Oxidative Neurotoxicity. ACS Chemical Neuroscience, 2020, 11, 3398-3408.	3.5	8
16	Chiral diene-promoted room temperature conjugate arylation: highly enantioselective synthesis of substituted chiral phenylalanine derivatives and ݱ,α-di(arylmethyl)acetates. Organic and Biomolecular Chemistry, 2020, 18, 4569-4574.	2.8	7
17	Pd(II)-Catalyzed Asymmetric Annulation toward the Synthesis of 2,3-Disubstituted Chiral Indenols. Journal of Organic Chemistry, 2020, 85, 3887-3893.	3.2	13
18	Metal-free directed C–H borylation. Chinese Science Bulletin, 2020, 65, 331-333.	0.7	1

#	Article	IF	CITATIONS
19	Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Aldehydes and Ketones. Chinese Journal of Organic Chemistry, 2020, 40, 255.	1.3	10
20	Asymmetric transformation of aliphatic amines: A breakthrough. Chinese Science Bulletin, 2020, 65, 428-430.	0.7	0
21	Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to Glyoxylates: Access to Optically Active Substituted Mandelic Acid Esters. Synlett, 2019, 30, 1693-1697.	1.8	2
22	Rhodium-Catalyzed Enantioselective Addition of Arylboroxines to Isatin-Derived <i>N</i> -Boc Ketimines Using Chiral Phosphite–Olefin Ligands: Asymmetric Synthesis of 3-Aryl-3-amino-2-oxindoles. Organic Letters, 2019, 21, 7493-7497.	4.6	13
23	Construction of Chiral 1,3-Diamines through Rhodium-Catalyzed Asymmetric Arylation of Cyclic <i>N</i> -Sulfonyl Imines. Organic Letters, 2019, 21, 5035-5039.	4.6	13
24	Synthesis of indolo[2,3-c]coumarins and indolo[2,3-c]quinolinones via microwave-assisted base-free intramolecular cross dehydrogenative coupling. Tetrahedron, 2019, 75, 1605-1611.	1.9	22
25	Access to Spiroindolines and Spirodihydrobenzofurans via Pd-Catalyzed Domino Heck Spiroyclization through C–H Activation and Carbene Insertion. Organic Letters, 2018, 20, 2728-2732.	4.6	43
26	Rhodium-Catalyzed Enantioselective Alkenylation of Cyclic Ketimines: Synthesis of Multifunctional Chiral α,α-Disubstituted Allylic Amine Derivatives. Organic Letters, 2018, 20, 2306-2310.	4.6	22
27	Rhodiumâ€catalyzed Asymmetric Arylation of Nitroalkenes Powered by Simple Chiral Sulfurâ€Olefin Ligands. Journal of the Chinese Chemical Society, 2018, 65, 331-336.	1.4	3
28	Ligand-Controlled Rhodium-Catalyzed Site-Selective Asymmetric Addition of Arylboronic Acids to α,β-Unsaturated Cyclic <i>N</i> -Sulfonyl Ketimines. Organic Letters, 2018, 20, 1789-1793.	4.6	33
29	Highly enantioselective synthesis of α-tertiary chiral amino acid derivatives through rhodium-catalyzed asymmetric arylation of cyclic <i>N</i> -sulfonyl α-ketimino esters. Organic and Biomolecular Chemistry, 2018, 16, 4633-4640.	2.8	19
30	Construction of Chiral Tricyclic Indoles through a Rhodium-Catalyzed Asymmetric Arylation Protocol. Organic Letters, 2017, 19, 384-387.	4.6	27
31	Enantioselective Synthesis of <i>gem</i> -Diaryl Benzofuran-3(2 <i>H</i>)-ones via One-Pot Asymmetric Rhodium/Palladium Relay Catalysis. Organic Letters, 2017, 19, 2726-2729.	4.6	17
32	Highly Enantioselective Arylation of <i>N</i> , <i>N</i> -Dimethylsulfamoyl-Protected Aldimines Using Simple Sulfur–Olefin Ligands: Access to Solifenacin and (<i>S</i>)-(+)-Cryptostyline II. Organic Letters, 2017, 19, 2138-2141.	4.6	32
33	Highly enantioselective Rh/chiral sulfur-olefin-catalyzed arylation of alkyl-substituted non-benzofused cyclic N-sulfonyl ketimines. Organic Chemistry Frontiers, 2017, 4, 2159-2162.	4.5	21
34	Recent advances in rhodium-catalyzed asymmetric synthesis of heterocycles. Organic and Biomolecular Chemistry, 2017, 15, 1029-1050.	2.8	60
35	Chiral Phosphorus-Olefin Ligands for Asymmetric Catalysis. Acta Chimica Sinica, 2017, 75, 655.	1.4	24
36	Transition Metal-Catalyzed Asymmetric Addition of Organoboron Reagents to Imines. Chinese Journal of Organic Chemistry, 2017, 37, 1589.	1.3	27

#	Article	IF	CITATIONS
37	Ming-Hua Xu. Tetrahedron, 2016, 72, 2606.	1.9	Ο
38	Construction of Cyclic Sulfamidates Bearing Two <i>gem</i> -Diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol. Organic Letters, 2016, 18, 2726-2729.	4.6	36
39	Asymmetric Reformatsky-Type Reaction of Isatin-Derived N-Sulfinyl Ketimines: Efficient and Practical Synthesis of Enantiopure Chiral 2-Oxoindolinyl-β3,3-Amino Esters. Synthesis, 2016, 48, 2595-2602.	2.3	8
40	Intramolecular cross dehydrogenative coupling of 4-substituted coumarins: rapid and efficient access to coumestans and indole[3,2-c]coumarins. Organic Chemistry Frontiers, 2016, 3, 1111-1115.	4.5	48
41	Access to Indole-Fused Polyheterocycles via Pd-Catalyzed Base-Free Intramolecular Cross Dehydrogenative Coupling. Journal of Organic Chemistry, 2016, 81, 11501-11507.	3.2	52
42	Rhodium-catalyzed asymmetric arylation of N- and O-containing cyclic aldimines: facile and efficient access to highly optically active 3,4-dihydrobenzo[1,4]oxazin-2-ones and dihydroquinoxalinones. Organic Chemistry Frontiers, 2016, 3, 944-948.	4.5	31
43	Rhodium(I)-Catalyzed Highly Enantioselective Insertion of Carbenoid into Si–H: Efficient Access to Functional Chiral Silanes. Journal of the American Chemical Society, 2016, 138, 1498-1501.	13.7	150
44	Simple Open-Chain Phosphite-Olefin as Ligand for Rh-Catalyzed Asymmetric Arylation of Cyclic Ketimines: Enantioselective Access to gem-Diaryl α-Amino Acid Derivatives. ACS Catalysis, 2016, 6, 661-665.	11.2	56
45	Rhodium-catalyzed asymmetric intramolecular addition of arylboronic acids to ketones: catalytic enantioselective access to 3-hydroxy-2,3-dihydrobenzofurans bearing a tetrasubstituted carbon stereocenter. Tetrahedron, 2016, 72, 2637-2642.	1.9	12
46	Recent applications of chiral N-tert-butanesulfinyl imines, chiral diene ligands and chiral sulfur–olefin ligands in asymmetric synthesis. Organic Chemistry Frontiers, 2015, 2, 73-89.	4.5	68
47	A highly diastereoselective Friedel–Crafts reaction of indoles with isatin-derived N-sulfinyl ketimines towards the efficient synthesis of chiral tetrasubstituted 3-indolyl-3-aminooxindoles. Organic and Biomolecular Chemistry, 2015, 13, 3363-3370.	2.8	24
48	Rhodium-Catalyzed Asymmetric Arylation of Cyclic <i>N</i> -Sulfonyl Aryl Alkyl Ketimines: Efficient Access to Highly Enantioenriched α-Tertiary Amines. Organic Letters, 2015, 17, 528-531.	4.6	68
49	Facile synthesis of acridines via Pd(0)-diphosphine complex-catalyzed tandem coupling/cyclization protocol. Organic and Biomolecular Chemistry, 2015, 13, 6580-6586.	2.8	34
50	Rhodium(I)-Catalyzed Asymmetric Carbene Insertion into B–H Bonds: Highly Enantioselective Access to Functionalized Organoboranes. Journal of the American Chemical Society, 2015, 137, 5268-5271.	13.7	151
51	Rhodium-Catalyzed Asymmetric Tandem Cyclization for Efficient and Rapid Access to Underexplored Heterocyclic Tertiary Allylic Alcohols Containing a Tetrasubstituted Olefin. Organic Letters, 2014, 16, 2712-2715.	4.6	59
52	Indium-Mediated Asymmetric Intramolecular Allenylation of N-tert-Butanesulfinyl Imines: Efficient and Practical Access to Chiral 3-Allenyl-4-aminochromanes. Organic Letters, 2014, 16, 4118-4121.	4.6	17
53	Lewis Acid Promoted Diastereoselective Addition of TMSCN and TMSCF3 to Isatin-Derived N-Sulfinyl Ketimines: Synthesis of Optically Active Tetrasubstituted 3-Aminooxindoles. Journal of Organic Chemistry, 2014, 79, 7746-7751.	3.2	39
54	Rhodium-Catalyzed Highly Enantioselective Arylation of Cyclic Diketimines: Efficient Synthesis of Chiral Tetrasubstituted 1,2,5-Thiadiazoline 1,1-Dioxides. Organic Letters, 2014, 16, 3962-3965.	4.6	54

#	Article	IF	CITATIONS
55	Simple sulfur–olefins as new promising chiral ligands for asymmetric catalysis. Chemical Communications, 2014, 50, 3771-3782.	4.1	110
56	Structure–activity relationship and interaction studies of new SIRT1 inhibitors with the scaffold of 3-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3050-3056.	2.2	3
57	Design of a new series of chiral phosphite–olefin ligands and their application in asymmetric catalysis. Organic Chemistry Frontiers, 2014, 1, 738.	4.5	24
58	Chiral Phosphite-Olefin Ligands:Application in Rh-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to β-Aryl-α,β-unsaturated Sulfonates. Acta Chimica Sinica, 2014, 72, 815.	1.4	11
59	A new versatile approach to synthesise enantioenriched 3-hydroxyoxindoles, 1,3-dihydroisobenzofuran and 3-isochromanone derivatives by a rhodium-catalyzed asymmetric arylation–cyclization sequence. Chemical Communications, 2013, 49, 11659.	4.1	29
60	The advantage of biosensor analysis over enzyme inhibition studies for slow dissociating inhibitors – characterization of hydroxamate-based matrix metalloproteinase-12 inhibitors. MedChemComm, 2013, 4, 432.	3.4	7
61	Zn-mediated asymmetric allylation of N-tert-butanesulfinyl ketimines: an efficient and practical access to chiral quaternary 3-aminooxindoles. Chemical Communications, 2013, 49, 1327.	4.1	64
62	Lewisâ€Acidâ€Catalyzed Intramolecular Azaâ€Friedel–Crafts Reaction of <i>Nâ€tertâ€</i> Butanesulfinyl Imines Efficient Synthesis of Optically Active 9â€Aminofluorene Derivatives. Asian Journal of Organic Chemistry, 2013, 2, 50-53.	: 2.7	12
63	Rhodiumâ€Catalyzed Enantioselective Addition to Unsymmetrical αâ€Diketones: Tandem Oneâ€Pot Synthesis of Optically Active 3â€Tetrasubstituted Isochroman Derivatives. Chemistry - A European Journal, 2013, 19, 865-869.	3.3	34
64	Enantioselective Synthesis of Chiral 3-Aryl-1-indanones through Rhodium-Catalyzed Asymmetric Intramolecular 1,4-Addition. Journal of Organic Chemistry, 2013, 78, 2736-2741.	3.2	44
65	Simple Branched Sulfur–Olefins as Chiral Ligands for Rh-Catalyzed Asymmetric Arylation of Cyclic Ketimines: Highly Enantioselective Construction of Tetrasubstituted Carbon Stereocenters. Journal of the American Chemical Society, 2013, 135, 971-974.	13.7	232
66	Identification of benzofuran-3-yl(phenyl)methanones as novel SIRT1 inhibitors: Binding mode, inhibitory mechanism and biological action. European Journal of Medicinal Chemistry, 2013, 60, 441-450.	5.5	20
67	Rhodium-Catalyzed Highly Enantioselective Addition of Arylboronic Acids to Cyclic Aldimines: Practical Asymmetric Synthesis of Cyclic Sulfamidates. Synthesis, 2013, 45, 2125-2133.	2.3	31
68	Chiral Sulfinamideâ€Olefin Ligands: Switchable Selectivity in Rhodiumâ€Catalyzed Asymmetric 1,2â€Addition of Arylboronic Acids to Aliphatic <i>α</i> â€Ketoesters. Chinese Journal of Chemistry, 2013, 31, 321-328.	4.9	19
69	Design of N-cinnamyl sulfinamides as new sulfur-containing olefin ligands for asymmetric catalysis: achieving structural simplicity with a categorical linear framework. Organic and Biomolecular Chemistry, 2012, 10, 1764.	2.8	52
70	Rhodium-catalyzed enantioselective 1,2-addition of arylboronic acids to heteroaryl α-ketoesters for synthesis of heteroaromatic α-hydroxy esters. Organic and Biomolecular Chemistry, 2012, 10, 9158.	2.8	19
71	Lewis Acid Promoted Highly Diastereoselective Petasis Borono-Mannich Reaction: Efficient Synthesis of Optically Active β,γ-Unsaturated α-Amino Acids. Organic Letters, 2012, 14, 2062-2065.	4.6	67
72	Efficient synthesis of optically active α-quaternary amino acids by highly diastereoselective [2,3]-rearrangement of allylic ammonium ylides. Chemical Communications, 2012, 48, 7274.	4.1	21

#	Article	IF	CITATIONS
73	Rhodiumâ€Catalyzed, Highly Enantioselective 1,2â€Addition of Aryl Boronic Acids to αâ€Ketoesters and αâ€Diketones Using Simple, Chiral Sulfur–Olefin Ligands. Angewandte Chemie - International Edition, 2012, 51, 780-783.	13.8	120
74	Design of N-sulfinyl homoallylic amines as novel sulfinamide-olefin hybrid ligands for asymmetric catalysis: application in Rh-catalyzed enantioselective 1,4-additions. Chemical Communications, 2011, 47, 7230.	4.1	81
75	Design of Chiral Sulfoxide–Olefins as a New Class of Sulfur-Based Olefin Ligands for Asymmetric Catalysis. Organic Letters, 2011, 13, 3410-3413.	4.6	88
76	Highly diastereoselective Friedel–Crafts reaction of arenes with N-tert-butanesulfinylimino ester towards the efficient synthesis of α-arylglycines. Organic and Biomolecular Chemistry, 2011, 9, 8452.	2.8	31
77	Biscinchona alkaloids as highly efficient bifunctional organocatalysts for the asymmetric conjugate addition of malonates to nitroalkenes at ambient temperature. Tetrahedron, 2011, 67, 10186-10194.	1.9	27
78	Sml2-promoted imino-Reformatsky reaction for facile synthesis of enantioenriched β-amino acid esters. Science China Chemistry, 2011, 54, 61-65.	8.2	5
79	Ruthenium(II) atalyzed Asymmetric Transfer Hydrogenation Using Unsymmetrical Vicinal Diamineâ€Based Ligands: Dramatic Substituent Effect on Catalyst Efficiency. European Journal of Organic Chemistry, 2011, 2011, 4205-4211.	2.4	26
80	Development of Bicyclo[3.3.0]octadiene- or Dicyclopentadiene-Based Chiral Diene Ligands for Transition-Metal-Catalyzed Reactions. Synlett, 2011, 2011, 1345-1356.	1.8	31
81	Highly Diastereoselective Indiumâ€Mediated Allenylation of <i>N</i> â€ <i>tert</i> â€Butanesulfinyl Imino Ester: Efficient Synthesis of Optically Active αâ€Allenylglycines. Advanced Synthesis and Catalysis, 2010, 352, 3136-3140.	4.3	31
82	Rhodiumâ€Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Nitroalkenes Using Chiral Bicyclo[3.3.0] Diene Ligands. Angewandte Chemie - International Edition, 2010, 49, 5780-5783.	13.8	120
83	Studies on gas-phase cyclometalations of [ArNi(PPh ₃) <i>n</i>] ⁺ (<i>n</i> = 1) Tj ETQq Spectrometry, 2010, 21, 1265-1274.	1 1 0.7843 2.8	314 rgBT /C 6
84	One-Pot Synthesis of Chiral Î \pm -Methylene-Î 3 -lactams with Excellent Diastereoselectivities and Enantioselectivities. Organic Letters, 2010, 12, 5154-5157.	4.6	56
85	Dramatic lithium chloride effect on the reaction stereocontrol in Zn-mediated asymmetric cinnamylation: highly practical synthesis of β-aryl homoallylic amines. Chemical Communications, 2010, 46, 8460.	4.1	55
86	Chiral Diene as the Ligand for the Synthesis of Axially Chiral Compounds via Palladium-Catalyzed Suzukiâ^'Miyaura Coupling Reaction. Organic Letters, 2010, 12, 5546-5549.	4.6	107
87	Nickel-Catalyzed Asymmetric Ullmann Coupling for the Synthesis of Axially Chiral Tetra-ortho-Substituted Biaryl Dials. Organic Letters, 2010, 12, 1072-1075.	4.6	48
88	Highly diastereoselective Friedel–Crafts reaction of indoles with an N-tert-butanesulfinylimino ester: an efficient and practical approach to enantiomerically enriched α-(3-indolyl)glycines. Chemical Communications, 2010, 46, 1550.	4.1	39
89	Highly Enantioselective Synthesis of (Diarylmethyl)amines by Rhodium-CatalyzedÂ-Arylation of N-Nosylimines Using a Chiral Bicyclo[3.3.0]diene Ligand. Synthesis, 2010, 2010, 3263-3267.	2.3	1
90	One-pot synthesis of furocoumarins via sequential Pd/Cu-catalyzed alkynylation and intramolecular hydroalkoxylation. Organic and Biomolecular Chemistry, 2010, 8, 3073.	2.8	41

#	Article	IF	CITATIONS
91	Rhodium/diene-catalyzed asymmetric arylation of N-sulfonyl indolylimines: a new access to highly optically active α-aryl 3-indolyl-methanamines. Chemical Communications, 2010, 46, 9223.	4.1	41
92	Concise Asymmetric Synthesis of Antimalarial Alkaloid (+)-Febrifugine. Synlett, 2009, 2009, 2301-2304.	1.8	2
93	A New Approach to Pyrrolocoumarin Derivatives by Palladium atalyzed Reactions: Expedient Construction of Polycyclic Lamellarin Scaffold. Advanced Synthesis and Catalysis, 2009, 351, 2005-2012.	4.3	56
94	Highly Efficient Asymmetric Synthesis of Vinylic Amino Alcohols by Znâ€Promoted Benzoyloxyallylation of Chiral <i>N</i> â€ <i>tert</i> â€Butanesulfinyl Imines: Facile and Rapid Access to (â^)â€Cytoxazone. Chemistry - A European Journal, 2009, 15, 10217-10224.	3.3	44
95	Rapid assembly of anti-1,3-diol units with 2-quaternary carbon stereocenter via samarium diiodide-promoted tandem Aldol/Evans-Tishchenko reaction. Tetrahedron Letters, 2009, 50, 3381-3384.	1.4	11
96	InBr3-catalyzed direct alkynylation of nitrones with terminal alkynes: an efficient synthesis of N-hydroxy-propargyl amines. Tetrahedron Letters, 2009, 50, 2952-2955.	1.4	23
97	Catalytic Enantioselective Synthesis of Chiral Phthalides by Efficient Reductive Cyclization of 2-Acylarylcarboxylates under Aqueous Transfer Hydrogenation Conditions. Organic Letters, 2009, 11, 4712-4715.	4.6	89
98	Samarium diiodide-promoted electrophilic amination of ketone enolates: efficient synthesis of quaternary carbon-containing α-aminated ketones. Tetrahedron Letters, 2008, 49, 5807-5809.	1.4	16
99	Study on mass spectrometric behavior of samarium di-iodide in tetrahydrofuran solution. International Journal of Mass Spectrometry, 2008, 270, 62-67.	1.5	4
100	Easily Accessible <i>C</i> ₂ ‣ymmetric Chiral Bicyclo[3.3.0] Dienes as Ligands for Rhodium atalyzed Asymmetric 1,4â€Addition. Chemistry - an Asian Journal, 2008, 3, 1511-1516.	3.3	62
101	Highly Practical Catalytic Asymmetric 1,4-Addition of Arylboronic Acids in Water Using New Hydrophilic Chiral Bicyclo[3.3.0] Diene Ligands. Organic Letters, 2008, 10, 4101-4104.	4.6	89
102	An Advance on Exploring <i>N</i> - <i>tert</i> -Butanesulfinyl Imines in Asymmetric Synthesis of Chiral Amines. Accounts of Chemical Research, 2008, 41, 831-840.	15.6	254
103	Concise Asymmetric Synthesis of (+)-CP-99,994 and (+)-L-733,060 via Efficient Construction of Homochiral syn-1,2-Diamines and syn-1,2-Amino Alcohols. Journal of Organic Chemistry, 2008, 73, 3307-3310.	3.2	71
104	An Efficient and Versatile Approach for Optical Resolution of <i>C</i> ₂ -Symmetric Axially Chiral Biaryl Dials. Synthesis of Enantiopure Biaryl-Derived Cyclic <i>trans</i> -1,2-Diols. Organic Letters, 2008, 10, 1243-1246.	4.6	38
105	Remarkable Salt Effect on In-Mediated Allylation of <i>N</i> - <i>tert</i> -Butanesulfinyl Imines in Aqueous Media:  Highly Practical Asymmetric Synthesis of Chiral Homoallylic Amines and Isoindolinones. Organic Letters, 2008, 10, 1259-1262.	4.6	138
106	Unusual heterochiral crystallization tendency of 3-arylphthalide compounds in non-racemic solution: reinvestigation on asymmetric Ni-catalyzed tandem reaction of substituted o-halobenzaldehydes. Tetrahedron Letters, 2007, 48, 7508-7511.	1.4	22
107	Design ofC2-Symmetric Tetrahydropentalenes as New Chiral Diene Ligands for Highly Enantioselective Rh-Catalyzed Arylation ofN-Tosylarylimines with Arylboronic Acids. Journal of the American Chemical Society, 2007, 129, 5336-5337.	13.7	364
108	Room-Temperature Highly Diastereoselective Zn-Mediated Allylation of ChiralN-tert-Butanesulfinyl Imines:  Remarkable Reaction Condition Controlled Stereoselectivity Reversal. Organic Letters, 2006, 8, 4979-4982.	4.6	117

#	Article	IF	CITATIONS
109	Catalytic Enantioselective Synthesis of Chiral Phthalides by Sml2-Mediated Reductive Cyclization of 2-Acylarylcarboxylates. Journal of the American Chemical Society, 2006, 128, 5624-5625.	13.7	17
110	A Highly Efficient and Direct Approach for Synthesis of Enantiopure β-Amino Alcohols by Reductive Cross-Coupling of Chiral N-tert-Butanesulfinyl Imines with Aldehydes ChemInform, 2006, 37, no.	0.0	0
111	Lipase-Catalyzed Desymmetrization of Quaternary Carbon-Containing 1,3-Propanediols: A New Entry to the Asymmetric Synthesis of α-Substituted Serine Analogues. Synlett, 2006, 2006, 1201-1204.	1.8	2
112	A Highly Efficient and Direct Approach for Synthesis of Enantiopure β-Amino Alcohols by Reductive Cross-Coupling of Chiral N-tert-Butanesulfinyl Imines with Aldehydes. Journal of the American Chemical Society, 2005, 127, 11956-11957.	13.7	121
113	Enantioselective Dihydroxylation of Alkenes Catalyzed by a PEG-Bound Bi-Cinchona Alkaloid Ligand. Chinese Journal of Chemistry, 2005, 23, 68-70.	4.9	3
114	Samarium Diiodide Induced Asymmetric Synthesis of Optically Pure Unsymmetrical Vicinal Diamines by Reductive Cross-Coupling of Nitrones with N-tert-Butanesulfinyl Imines ChemInform, 2005, 36, no.	0.0	0
115	Highly Diastereoselective and Enantioselective Synthesis of Enantiopure C2-Symmetrical Vicinal Diamines by Reductive Homocoupling of Chiral N-tert-Butanesulfinyl Imines ChemInform, 2005, 36, no.	0.0	0
116	A New Entry to Asymmetric Synthesis of Optically Active α,γ-Substituted γ-Butyrolactones, Using a Carbohydrate Derived Amide as Both a Chiral Auxiliary and a Proton Source ChemInform, 2005, 36, no.	0.0	0
117	Enantioselective Dihydroxylation of Alkenes Catalyzed by a PEG-Bound Bi-Chinchona Alkaloid Ligand ChemInform, 2005, 36, no.	0.0	0
118	A New Entry to Asymmetric Synthesis of Optically Active α,γ-Substituted γ-Butyrolactones, Using a Carbohydrate Derived Amide as Both a Chiral Auxiliary and a Proton Source. Journal of Organic Chemistry, 2005, 70, 529-532.	3.2	34
119	Nickel-Catalyzed Cross-Coupling Reactions of 4-Mesylcoumarins with Aryl Halides: Facile Synthesis of 4-Substituted Coumarins. Synlett, 2004, 2004, 2364-2368.	1.8	3
120	Highly Diastereoselective and Enantioselective Synthesis of EnantiopureC2-Symmetrical Vicinal Diamines by Reductive Homocoupling of ChiralN-tert-Butanesulfinyl Imines. Organic Letters, 2004, 6, 4747-4750.	4.6	81
121	Samarium Diiodide-Induced Asymmetric Synthesis of Optically Pure Unsymmetrical Vicinal Diamines by Reductive Cross-Coupling of Nitrones withN-tert-Butanesulfinyl Imines. Organic Letters, 2004, 6, 3953-3956.	4.6	89
122	A Highly Efficient and Practical New PEG-Bound Bi-Cinchona Alkaloid Ligand for the Catalytic Asymmetric Aminohydroxylation of Alkenes ChemInform, 2004, 35, no.	0.0	0
123	A highly efficient and practical new PEG-bound bi-cinchona alkaloid ligand for the catalytic asymmetric aminohydroxylation of alkenes. Tetrahedron: Asymmetry, 2004, 15, 1915-1918.	1.8	28
124	Bifunctional pyridyl alcohols with the bicyclo[3.3.0]octane scaffold in the asymmetric addition of diethylzinc to aldehydes. Tetrahedron, 2004, 60, 8861-8868.	1.9	7
125	Asymmetric Catalysis by 1,1′-Binaphthyl Compounds with Conformation-Defined 3,3′-Aryl Substituents ChemInform, 2003, 34, no.	0.0	0
126	Greatly Enhanced Enantioselectivity by an Apparently Remote Steric Effect in the 1,1′-Binaphthyl-Catalyzed Alkynylzinc Addition to Aldehydes ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
127	A New 1,1′-Binaphthyl-Based Catalyst for the Enantioselective Phenylacetylene Addition to Aromatic Aldehydes Without Using a Titanium Complex ChemInform, 2003, 34, no.	0.0	0
128	Synthesis and Ionochromic Effect of Hyperbranched and Linear Poly(thienyleneâ^'phenylene)s. Macromolecules, 2003, 36, 2689-2694.	4.8	22
129	A New 1,1â€~-Binaphthyl-Based Catalyst for the Enantioselective Phenylacetylene Addition to Aromatic Aldehydes without Using a Titanium Complex. Organic Letters, 2002, 4, 4555-4557.	4.6	94
130	A Practical Enantioselective Fluorescent Sensor for Mandelic Acid. Journal of the American Chemical Society, 2002, 124, 2088-2089.	13.7	154
131	Fluorescent Sensors for the Enantioselective Recognition of Mandelic Acid:Â Signal Amplification by Dendritic Branching. Journal of the American Chemical Society, 2002, 124, 14239-14246.	13.7	161
132	Asymmetric catalysis by 1,1′-binaphthyl compounds with conformation-defined 3,3′-aryl substituents. Tetrahedron, 2002, 58, 8189-8193.	1.9	15
133	Novel unsymmetrically hyperbranched polythiophenes with conjugation gradient. Tetrahedron Letters, 2002, 43, 6347-6350.	1.4	47
134	Greatly enhanced enantioselectivity by an apparently remote steric effect in the 1,1′-binaphthyl-catalyzed alkynylzinc addition to aldehydes. Tetrahedron Letters, 2002, 43, 8831-8834.	1.4	45
135	Development of a New Reaction System for the Synthesis of Highly Optically Active α,γ-Substituted γ-Butyrolactones. Journal of Organic Chemistry, 2001, 66, 3953-3962.	3.2	52
136	Construction of an ortho-phenol polymer. Tetrahedron Letters, 2001, 42, 6235-6238.	1.4	11
137	Chiral Sulfonamide Induced Enantioselective Protonation of Samarium Enolate in the Reaction of α,β-Unsaturated Ester with Ketone. Organic Letters, 2000, 2, 3773-3776.	4.6	35
138	A Highly Efficient Asymmetric Synthesis of Optically Active α,γ-Substituted γ-Butyrolactones Using a Chiral Auxiliary Derived from Isosorbide. Organic Letters, 2000, 2, 2229-2232.	4.6	45