
Gil Garrote

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3205337/publications.pdf Version: 2024-02-01

CII CADDOTE

#	Article	IF	CITATIONS
1	Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. Bioresource Technology, 2022, 343, 126100.	4.8	31
2	Alternative Lime Pretreatment of Corn Stover for Second-Generation Bioethanol Production. Agronomy, 2021, 11, 155.	1.3	8
3	Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes, 2021, 9, 173.	1.3	14
4	Evaluation of sustainable technologies for the processing of <i>Sargassum muticum</i> : cascade biorefinery schemes. Green Chemistry, 2021, 23, 7001-7015.	4.6	6
5	Recent advances to recover value-added compounds from avocado by-products following a biorefinery approach. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100433.	3.2	20
6	Fast-growing Paulownia wood fractionation by microwave-assisted hydrothermal treatment: A kinetic assessment. Bioresource Technology, 2021, 338, 125535.	4.8	13
7	Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion) Tj ETQq1 1 2021, 342, 125961.	0.784314 4.8	rgBT /Over 83
8	Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 2020, 299, 122613.	4.8	83
9	A Whole-Slurry Fermentation Approach to High-Solid Loading for Bioethanol Production from Corn Stover. Agronomy, 2020, 10, 1790.	1.3	18
10	Sequential two-stage autohydrolysis biorefinery for the production of bioethanol from fast-growing Paulownia biomass. Energy Conversion and Management, 2020, 226, 113517.	4.4	22
11	Formosolv Pretreatment to Fractionate Paulownia Wood Following a Biorefinery Approach: Isolation and Characterization of the Lignin Fraction. Agronomy, 2020, 10, 1205.	1.3	9
12	Comparative study of biorefinery processes for the valorization of fast-growing Paulownia wood. Bioresource Technology, 2020, 314, 123722.	4.8	27
13	Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renewable Energy, 2019, 141, 728-735.	4.3	59
14	Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, 2017, 136, 50-65.	4.4	251
15	Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health. LWT - Food Science and Technology, 2017, 77, 449-459.	2.5	43
16	Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Applied Energy, 2017, 187, 777-789.	5.1	70
17	Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 2017, 243, 273-283.	4.8	91
18	Furfural production from Eucalyptus wood using an Acidic Ionic Liquid. Carbohydrate Polymers, 2016, 146, 20-25.	5.1	68

GIL GARROTE

#	Article	IF	CITATIONS
19	Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass and Bioenergy, 2016, 90, 42-49.	2.9	11
20	Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production. Energy & Fuels, 2016, 30, 8236-8245.	2.5	23
21	Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn. Ecotoxicology and Environmental Safety, 2016, 131, 118-126.	2.9	38
22	Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CYTA - Journal of Food, 2016, 14, 255-265.	0.9	14
23	Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresource Technology, 2015, 191, 263-270.	4.8	46
24	Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent. Industrial Crops and Products, 2015, 77, 163-166.	2.5	33
25	Simple and Efficient Furfural Production from Xylose in Media Containing 1-Butyl-3-Methylimidazolium Hydrogen Sulfate. Industrial & Engineering Chemistry Research, 2015, 54, 8368-8373.	1.8	69
26	Biomass, sugar, and bioethanol potential of sweet corn. GCB Bioenergy, 2015, 7, 153-160.	2.5	27
27	Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Industrial Crops and Products, 2014, 54, 32-39.	2.5	47
28	Bioethanol Production from Hydrothermally Pretreated and Delignified Corn Stover by Fed-Batch Simultaneous Saccharification and Fermentation. Energy & Fuels, 2014, 28, 1158-1165.	2.5	12
29	Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. Journal of Cleaner Production, 2014, 76, 200-203.	4.6	29
30	Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel, 2013, 111, 66-74.	3.4	64
31	Extracting value-added products before pulping: Hemicellulosic ethanol from <i>Eucalyptus globulus</i> wood. Holzforschung, 2012, 66, 591-599.	0.9	43
32	Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 2012, 6, 219-232.	1.9	109
33	Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012, 94, 305-312.	3.4	86
34	Second-Generation Bioethanol from Residual Woody Biomass. Energy & Fuels, 2011, 25, 4803-4810.	2.5	23
35	Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresource Technology, 2010, 101, 8706-8712.	4.8	168
36	Experimental Assessment on the Enzymatic Hydrolysis of Hydrothermally Pretreated Eucalyptus globulus Wood. Industrial & Engineering Chemistry Research, 2010, 49, 4653-4663.	1.8	47

GIL GARROTE

#	Article	IF	CITATIONS
37	Processing of <i>Acacia dealbata</i> in Aqueous Media: First Step of a Wood Biorefinery. Industrial & Engineering Chemistry Research, 2009, 48, 6618-6626.	1.8	51
38	Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis. Biotechnology Progress, 2008, 21, 233-243.	1.3	62
39	Teaching Sustainable Development Concepts in the Laboratory: A Solid–Liquid Extraction Experiment. Journal of Chemical Education, 2008, 85, 972.	1.1	2
40	Coproduction of Oligosaccharides and Glucose from Corncobs by Hydrothermal Processing and Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2008, 47, 1336-1345.	1.8	55
41	Production ofl-lactic Acid and Oligomeric Compounds from Apple Pomace by Simultaneous Saccharification and Fermentation:Â A Response Surface Methodology Assessment. Journal of Agricultural and Food Chemistry, 2007, 55, 5580-5587.	2.4	43
42	Effects ofEucalyptus globulusWood Autohydrolysis Conditions on the Reaction Products. Journal of Agricultural and Food Chemistry, 2007, 55, 9006-9013.	2.4	59
43	Xylooligosaccharides Production fromArundo donax. Journal of Agricultural and Food Chemistry, 2007, 55, 5536-5543.	2.4	30
44	Sugar production from cellulosic biosludges generated in a water treatment plant of a Kraft pulp mill. Biochemical Engineering Journal, 2007, 37, 319-327.	1.8	10
45	Autohydrolysis ofArundodonaxL., a Kinetic Assessment. Industrial & Engineering Chemistry Research, 2006, 45, 8909-8920.	1.8	29
46	Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 2006, 74, 78-88.	2.7	234
47	Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. Journal of Food Engineering, 2004, 61, 143-152.	2.7	216
48	Production of Substituted Oligosaccharides by Hydrolytic Processing of Barley Husks. Industrial & Engineering Chemistry Research, 2004, 43, 1608-1614.	1.8	78
49	Manufacture of Fermentable Sugar Solutions from Sugar Cane Bagasse Hydrolyzed with Phosphoric Acid at Atmospheric Pressure. Journal of Agricultural and Food Chemistry, 2004, 52, 4172-4177.	2.4	52
50	Modeling of the Hydrolysis of Sugar Cane Bagasse with Hydrochloric Acid. Applied Biochemistry and Biotechnology, 2003, 104, 51-68.	1.4	65
51	Hydrolytic Processing of Rice Husks in Aqueous Media: A Kinetic Assessment. Collection of Czechoslovak Chemical Communications, 2002, 67, 509-530.	1.0	34
52	Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 2002, 52, 211-218.	2.7	236
53	Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis–posthydrolysis processes: posthydrolysis kinetics. Bioresource Technology, 2001, 79, 155-164.	4.8	120
54	Manufacture of Xylose-Based Fermentation Media from Corncobs by Posthydrolysis of Autohydrolysis Liquors. Applied Biochemistry and Biotechnology, 2001, 95, 195-208.	1.4	43