Alain Chariot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3205221/publications.pdf

Version: 2024-02-01

66315 54882 7,721 85 42 84 citations h-index g-index papers 90 90 90 12657 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The E3 ligase COP1 promotes ERα signaling and suppresses EMT in breast cancer. Oncogene, 2022, 41, 173-190.	2.6	8
2	Loss of the Transfer RNA Wobble Uridine–Modifying Enzyme Elp3 Delays T Cell Cycle Entry and Impairs T Follicular Helper Cell Responses through Deregulation of Atf4. Journal of Immunology, 2021, 206, 1077-1087.	0.4	5
3	Loss of tRNA-modifying enzyme Elp3 activates a p53-dependent antitumor checkpoint in hematopoiesis. Journal of Experimental Medicine, 2021, 218, .	4.2	14
4	NF-κB Signaling in Ex-Vivo Mouse Intestinal Organoids. Methods in Molecular Biology, 2021, 2366, 283-292.	0.4	2
5	Wobble tRNA modification and hydrophilic amino acid patterns dictate protein fate. Nature Communications, 2021, 12, 2170.	5.8	16
6	Downregulation of the FTO m6A RNA demethylase promotes EMT-mediated progression of epithelial tumors and sensitivity to Wnt inhibitors. Nature Cancer, 2021, 2, 611-628.	5.7	30
7	ATP-citrate lyase promotes axonal transport across species. Nature Communications, 2021, 12, 5878.	5.8	11
8	The X-linked trichothiodystrophy-causing gene RNF113A links the spliceosome to cell survival upon DNA damage. Nature Communications, 2020, 11 , 1270 .	5.8	26
9	Proteostasis is essential during cochlear development for neuron survival and hair cell polarity. EMBO Reports, 2019, 20, e47097.	2.0	14
10	CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. Cell Death and Disease, 2019, 10, 103.	2.7	50
11	Elongator subunit 3 (ELP3) modifies ALS through tRNA modification. Human Molecular Genetics, 2018, 27, 1276-1289.	1.4	56
12	Dynamic Regulation of tRNA Modifications in Cancer. , 2018, , 163-186.		10
13	The Endosomal Protein CEMIP Links WNT Signaling to MEK1–ERK1/2 Activation in Selumetinib-Resistant Intestinal Organoids. Cancer Research, 2018, 78, 4533-4548.	0.4	30
14	Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature, 2018, 558, 605-609.	13.7	177
15	tRNA Modification: Is Cancer Having a Wobble?. Trends in Cancer, 2017, 3, 249-252.	3.8	42
16	KIAA1199: A novel regulator of MEK/ERKâ€induced Schwann cell dedifferentiation. Glia, 2017, 65, 1682-1696.	2.5	16
17	Loss of Elp3 Impairs the Acetylation and Distribution of Connexin-43 in the Developing Cerebral Cortex. Frontiers in Cellular Neuroscience, 2017, 11, 122.	1.8	15
18	Molecular Mechanisms Involved in Schwann Cell Plasticity. Frontiers in Molecular Neuroscience, 2017, 10, 38.	1.4	142

#	Article	IF	CITATIONS
19	Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Research, 2016, 26, 1131-1148.	5.7	37
20	Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer. Journal of Experimental Medicine, 2016, 213, 2503-2523.	4.2	128
21	The Prosurvival IKK-Related Kinase IKKϵ Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Research, 2016, 76, 2587-2599.	0.4	21
22	EGFR and NF-κB: partners in cancer. Trends in Molecular Medicine, 2015, 21, 385-393.	3.5	180
23	A Dynamic Unfolded Protein Response Contributes to the Control of Cortical Neurogenesis. Developmental Cell, 2015, 35, 553-567.	3.1	169
24	Targeting osteopontin suppresses glioblastoma stemâ€like cell character and tumorigenicity ⟨i⟩in vivo⟨/i⟩. International Journal of Cancer, 2015, 137, 1047-1057.	2.3	49
25	A Role for APPL1 in TLR3/4-Dependent TBK1 and IKKε Activation in Macrophages. Journal of Immunology, 2015, 194, 3970-3983.	0.4	16
26	Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. Journal of Experimental Medicine, 2015, 212, 2057-2075.	4.2	67
27	Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine. Journal of Cell Biology, 2015, 211, 2113OIA257.	2.3	0
28	NF-κB-induced KIAA1199 promotes survival through EGFR signalling. Nature Communications, 2014, 5, 5232.	5.8	101
29	IKKα Promotes Intestinal Tumorigenesis by Limiting Recruitment of M1-like Polarized Myeloid Cells. Cell Reports, 2014, 7, 1914-1925.	2.9	22
30	MicroRNA Targeting of CoREST Controls Polarization of Migrating Cortical Neurons. Cell Reports, 2014, 7, 1168-1183.	2.9	65
31	p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration. Developmental Cell, 2012, 23, 729-744.	3.1	97
32	DERP6 (ELP5) and C3ORF75 (ELP6) Regulate Tumorigenicity and Migration of Melanoma Cells as Subunits of Elongator. Journal of Biological Chemistry, 2012, 287, 32535-32545.	1.6	47
33	DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature, 2012, 484, 386-389.	13.7	99
34	NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Research, 2011, 13, 214.	2.2	159
35	Involvement of placental growth factor in Wallerian degeneration. Glia, 2011, 59, 379-396.	2.5	31
36	Induction of the Alternative NF-κB Pathway by Lymphotoxin αβ (LTαβ) Relies on Internalization of LTβ Receptor. Molecular and Cellular Biology, 2011, 31, 4319-4334.	1,1	43

3

#	Article	IF	Citations
37	The emerging role of lysine acetylation of non-nuclear proteins. Cellular and Molecular Life Sciences, 2010, 67, 1255-1264.	2.4	79
38	The Repressing Function of the Oncoprotein BCL-3 Requires CtBP, while Its Polyubiquitination and Degradation Involve the E3 Ligase TBLR1. Molecular and Cellular Biology, 2010, 30, 4006-4021.	1.1	33
39	BCL-3 Degradation Involves Its Polyubiquitination through a FBW7-independent Pathway and Its Binding to the Proteasome Subunit PSMB1. Journal of Biological Chemistry, 2010, 285, 25831-25840.	1.6	24
40	Elongator – an emerging role in neurological disorders. Trends in Molecular Medicine, 2010, 16, 1-6.	3.5	52
41	Molecular layers underlying cytoskeletal remodelling during cortical development. Trends in Neurosciences, 2010, 33, 38-47.	4.2	99
42	The Adaptor Protein CIKS/Act1 Is Essential for IL-25-Mediated Allergic Airway Inflammation. Journal of Immunology, 2009, 182, 1617-1630.	0.4	142
43	The NF-κB-independent functions of IKK subunits in immunity and cancer. Trends in Cell Biology, 2009, 19, 404-413.	3.6	161
44	Elongator Controls the Migration and Differentiation of Cortical Neurons through Acetylation of α-Tubulin. Cell, 2009, 136, 551-564.	13.5	688
45	TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cellular and Molecular Life Sciences, 2008, 65, 2964-2978.	2.4	369
46	Induction of nuclear factor- $^{\Omega}$ B and its downstream genes by TNF- $^{\hat{1}}$ ± and IL- $^{\hat{1}}$ 2 has a pro-apoptotic role in pancreatic beta cells. Diabetologia, 2008, 51, 1213-1225.	2.9	136
47	Deregulated expression of pro-survival and pro-apoptotic p53-dependent genes upon Elongator deficiency in colon cancer cells. Biochemical Pharmacology, 2008, 75, 2122-2134.	2.0	19
48	Are the IKKs and IKK-related kinases TBK1 and IKK-É> similarly activated?. Trends in Biochemical Sciences, 2008, 33, 171-180.	3.7	202
49	Promoter-dependent Effect of IKKα on NF-κB/p65 DNA Binding. Journal of Biological Chemistry, 2007, 282, 21308-21318.	1.6	46
50	Lipopolysaccharide-mediated Interferon Regulatory Factor Activation Involves TBK1-IKKϵ-dependent Lys63-linked Polyubiquitination and Phosphorylation of TANK/I-TRAF. Journal of Biological Chemistry, 2007, 282, 31131-31146.	1.6	77
51	A Case of FIP1L1-PDGFRA-Positive Chronic Eosinophilic Leukemia with a Rare FIP1L1 Breakpoint. Journal of Molecular Diagnostics, 2007, 9, 414-419.	1.2	11
52	In Vitro cytotoxicity of some medicinal plants from Georgian Amaryllidaceae. Phytotherapy Research, 2007, 21, 622-624.	2.8	22
53	Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochemical Pharmacology, 2007, 73, 1982-1994.	2.0	83
54	Further Insights in the Mechanisms of Interleukin- $1\hat{l}^2$ Stimulation of Osteoprotegerin in Osteoblast-Like Cells. Journal of Bone and Mineral Research, 2007, 22, 1350-1361.	3.1	29

#	Article	IF	CITATIONS
55	Transcription Impairment and Cell Migration Defects in Elongator-Depleted Cells: Implication for Familial Dysautonomia. Molecular Cell, 2006, 22, 521-531.	4.5	191
56	TNFα- and IKKβ-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKγ and NF-κB activation. Biochemical Journal, 2006, 394, 593-603.	1.7	30
57	Deregulated NF-κB activity in haematological malignancies. Biochemical Pharmacology, 2006, 72, 1069-1080.	2.0	48
58	20 years of NF-κB. Biochemical Pharmacology, 2006, 72, 1051-1053.	2.0	16
59	A phase 1–2, prospective, double blind, randomized study of the safety and efficacy of Sulfasalazine for the treatment of progressing malignant gliomas: study protocol of [ISRCTN45828668]. BMC Cancer, 2006, 6, 29.	1.1	28
60	Raloxifene-Induced Myeloma Cell Apoptosis: A Study of Nuclear Factor-κB Inhibition and Gene Expression Signature. Molecular Pharmacology, 2006, 69, 1615-1623.	1.0	42
61	Low daunomycin concentrations protect colorectal cancer cells from hypoxia-induced apoptosis. Oncogene, 2005, 24, 1788-1793.	2.6	4
62	Phosphorylation of NF- \hat{l}° B and \hat{l}° B proteins: implications in cancer and inflammation. Trends in Biochemical Sciences, 2005, 30, 43-52.	3.7	1,285
63	Interleukin-6 receptor shedding is enhanced by interleukin-1? and tumor necrosis factor? and is partially mediated by tumor necrosis factor?-converting enzyme in osteoblast-like cells. Arthritis and Rheumatism, 2005, 52, 84-93.	6.7	39
64	Caspase-8-Dependent HER-2 Cleavage in Response to Tumor Necrosis Factor α Stimulation Is Counteracted by Nuclear Factor κB through c-FLIP-L Expression. Cancer Research, 2004, 64, 2684-2691.	0.4	37
65	Protein Phosphorylation as a Key Mechanism for the Regulation of BCL-3 Activity. Cell Cycle, 2004, 3, 1498-1501.	1.3	20
66	Regulation of HER-2 oncogene expression by cyclooxygenase-2 and prostaglandin E2. Oncogene, 2004, 23, 1631-1635.	2.6	68
67	GSK3-Mediated BCL-3 Phosphorylation Modulates Its Degradation and Its Oncogenicity. Molecular Cell, 2004, 16, 35-45.	4.5	119
68	NF-κB2/p100 induces Bcl-2 expression. Leukemia, 2003, 17, 1349-1356.	3.3	153
69	NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene, 2003, 22, 90-97.	2.6	411
70	Role of the adaptor protein CIKS in the activation of the IKK complex. Biochemical and Biophysical Research Communications, 2003, 309, 84-90.	1.0	22
71	Potentiation of Tumor Necrosis Factor-Induced NF-κB Activation by Deacetylase Inhibitors Is Associated with a Delayed Cytoplasmic Reappearance of lκBα. Molecular and Cellular Biology, 2003, 23, 6200-6209.	1.1	89
72	Cytoplasmic lκBα Increases NF-κB-independent Transcription through Binding to Histone Deacetylase (HDAC) 1 and HDAC3. Journal of Biological Chemistry, 2003, 278, 46541-46548.	1.6	88

#	Article	lF	CITATION
73	NF-κB Activating Scaffold Proteins as Signaling Molecules and Putative Therapeutic Targets. Current Medicinal Chemistry, 2003, 10, 593-602.	1.2	12
74	Association of the Adaptor TANK with the $\hat{l^p}$ B Kinase (IKK) Regulator NEMO Connects IKK Complexes with IKK $\hat{l}\mu$ and TBK1 Kinases. Journal of Biological Chemistry, 2002, 277, 37029-37036.	1.6	149
75	Synergistic Activation of Human Immunodeficiency Virus Type 1 Promoter Activity by NF- \hat{l}^{Q} B and Inhibitors of Deacetylases: Potential Perspectives for the Development of Therapeutic Strategies. Journal of Virology, 2002, 76, 11091-11103.	1.5	121
76	CIKS, a connection to Ikappa B kinase and stress-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10494-10499.	3.3	153
77	ll̂ºB-α Enhances Transactivation by the HOXB7 Homeodomain-containing Protein. Journal of Biological Chemistry, 1999, 274, 5318-5325.	1.6	27
78	CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene, 1999, 18, 4007-4014.	2.6	55
79	The homeodomain-containing proteins. Biochemical Pharmacology, 1999, 58, 1851-1857.	2.0	43
80	Molecular cloning of a mutatedHOXB7 cDNA encoding a truncated transactivating homeodomain-containing protein., 1998, 71, 46-54.		9
81	Molecules in focus The HOXC6 homeodomain-containing proteins. International Journal of Biochemistry and Cell Biology, 1998, 30, 651-655.	1.2	9
82	Detection of HOXA1 Expression in Human Breast Cancer. Biochemical and Biophysical Research Communications, 1996, 222, 292-297.	1.0	60
83	Cloning and expression of a new HOXC6 transcript encoding a repressing protein. Biochemical Journal, 1996, 319, 91-97.	1.7	28
84	Tamoxifen and its active metabolite inhibit growth of estrogen receptor-negative MDA-MB-435 cells. Biochemical Pharmacology, 1995, 49, 351-358.	2.0	44
85	Homeobox genes: Potential candidates for the transcriptional control of the transformed and invasive phenotype. Biochemical Pharmacology, 1994, 47, 137-143.	2.0	49