Ibrahim Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204256/publications.pdf

Version: 2024-02-01

201674 144013 3,246 60 27 57 h-index citations g-index papers 63 63 63 3220 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Characterization of the background for a neutrino search with the HAWC observatory. Astroparticle Physics, 2022, 137, 102670.	4.3	2
2	HAWC Study of the Ultra-high-energy Spectrum of MGRO J1908+06. Astrophysical Journal, 2022, 928, 116.	4.5	6
3	Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC. Astrophysical Journal, 2022, 929, 125.	4.5	8
4	Gamma/hadron separation with the HAWC observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1039, 166984.	1.6	3
5	Probing the Extragalactic Mid-infrared Background with HAWC. Astrophysical Journal, 2022, 933, 223.	4.5	O
6	A Survey of Active Galaxies at TeV Photon Energies with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2021, 907, 67.	4.5	13
7	Evidence of 200 TeV Photons from HAWC J1825-134. Astrophysical Journal Letters, 2021, 907, L30.	8.3	34
8	Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gammaâ€ray Flash Signatures. Geophysical Research Letters, 2021, 48, e2020GL090033.	4.0	7
9	HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nature Astronomy, 2021, 5, 465-471.	10.1	62
10	Spectrum and Morphology of the Very-high-energy Source HAWC J2019+368. Astrophysical Journal, 2021, 911, 143.	4.5	14
11	Evidence that Ultra-high-energy Gamma Rays Are a Universal Feature near Powerful Pulsars. Astrophysical Journal Letters, 2021, 911, L27.	8.3	32
12	HAWC Search for High-mass Microquasars. Astrophysical Journal Letters, 2021, 912, L4.	8.3	3
13	Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC. Astrophysical Journal, 2021, 914, 106.	4.5	9
14	HAWC as a Ground-Based Space-Weather Observatory. Solar Physics, 2021, 296, 1.	2.5	2
15	Multimessenger Gamma-Ray and Neutrino Coincidence Alerts Using HAWC and IceCube Subthreshold Data. Astrophysical Journal, 2021, 906, 63.	4.5	9
16	HAWC J2227+610 and Its Association with G106.3+2.7, a New Potential Galactic PeVatron. Astrophysical Journal Letters, 2020, 896, L29.	8.3	48
17	Multiple Galactic Sources with Emission Above 56ÂTeV Detected by HAWC. Physical Review Letters, 2020, 124, 021102.	7.8	143
18	3HWC: The Third HAWC Catalog of Very-high-energy Gamma-Ray Sources. Astrophysical Journal, 2020, 905, 76.	4.5	99

#	Article	IF	Citations
19	Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC. Astrophysical Journal, 2020, 905, 73.	4.5	2
20	HAWC and Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341. Astrophysical Journal Letters, 2020, 903, L14.	8.3	5
21	Searching for dark matter sub-structure with HAWC. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 022-022.	5.4	9
22	Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC. Astrophysical Journal, 2019, 881, 134.	4.5	98
23	MAGIC and <i>Fermi </i> -LAT gamma-ray results on unassociated HAWC sources. Monthly Notices of the Royal Astronomical Society, 2019, 485, 356-366.	4.4	7
24	All-sky Measurement of the Anisotropy of Cosmic Rays at 10 TeV and Mapping of the Local Interstellar Magnetic Field. Astrophysical Journal, 2019, 871, 96.	4.5	32
25	A search for dark matter in the Galactic halo with HAWC. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 049-049.	5.4	36
26	Data acquisition architecture and online processing system for the HAWC gamma-ray observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 138-146.	1.6	16
27	Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2018, 853, 154.	4.5	69
28	Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC. Physical Review D, 2018, 98, .	4.7	37
29	First HAWC observations of the Sun constrain steady TeV gamma-ray emission. Physical Review D, 2018, 98, .	4.7	19
30	Observation of Anisotropy of TeV Cosmic Rays with Two Years of HAWC. Astrophysical Journal, 2018, 865, 57.	4.5	25
31	Very-high-energy particle acceleration powered by the jets of the microquasar SS 433. Nature, 2018, 562, 82-85.	27.8	75
32	Constraining the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover accent="true"> <mml:mi>p</mml:mi> <mml:mo stretchy="false"> A^</mml:mo> </mml:mover> <mml:mo stretchy="false"> A^</mml:mo> <mml:mi>p</mml:mi>p</mml:math> ratio in TeV cosmic rays with	4.7	9
33	observations of the Moon shadow by HAWC. Physical Review D, 2018, 97, . Search for dark matter gamma-ray emission from the Andromeda Galaxy with the High-Altitude Water Cherenkov Observatory. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 043-043.	5.4	11
34	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	12.6	654
35	Calibration of a large water-Cherenkov detector at the Sierra Negra site of LAGO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 861, 28-37.	1.6	7
36	Search for Very High-energy Gamma Rays from the Northern Fermi Bubble Region with HAWC. Astrophysical Journal, 2017, 842, 85.	4.5	28

#	Article	IF	CITATIONS
37	Daily Monitoring of TeV Gamma-Ray Emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC. Astrophysical Journal, 2017, 841, 100.	4.5	39
38	The HAWC Real-time Flare Monitor for Rapid Detection of Transient Events. Astrophysical Journal, 2017, 843, 116.	4.5	16
39	All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500ÂTeV. Physical Review D, 2017, 96, .	4.7	56
40	Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science, 2017, 358, 911-914.	12.6	303
41	Search for Very-high-energy Emission from Gamma-Ray Bursts Using the First 18 Months of Data from the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2017, 843, 88.	4.5	12
42	The 2HWC HAWC Observatory Gamma-Ray Catalog. Astrophysical Journal, 2017, 843, 40.	4.5	200
43	Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. Astrophysical Journal, 2017, 843, 39.	4.5	159
44	Characterization of a outer detector (outriggers) for HAWC. Journal of Physics: Conference Series, 2017, 792, 012094.	0.4	1
45	Gamma/hadron separation in HAWC using neural networks. Proceedings of SPIE, 2016, , .	0.8	2
46	SEARCH FOR TeV GAMMA-RAY EMISSION FROM POINT-LIKE SOURCES IN THE INNER GALACTIC PLANE WITH A PARTIAL CONFIGURATION OF THE HAWC OBSERVATORY. Astrophysical Journal, 2016, 817, 3.	4.5	33
47	The transverse momentum dependence of charged kaon Bose–Einstein correlations in the SELEX experiment. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 753, 458-464.	4.1	3
48	SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY. Astrophysical Journal, 2015, 800, 78.	4.5	30
49	Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes. Astroparticle Physics, 2015, 64, 4-12.	4.3	24
50	VAMOS: A pathfinder for the HAWC gamma-ray observatory. Astroparticle Physics, 2015, 62, 125-133.	4.3	11
51	Sensitivity of HAWC to high-mass dark matter annihilations. Physical Review D, 2014, 90, .	4.7	38
52	OBSERVATION OF SMALL-SCALE ANISOTROPY IN THE ARRIVAL DIRECTION DISTRIBUTION OF TeV COSMIC RAYS WITH HAWC. Astrophysical Journal, 2014, 796, 108.	4.5	71
53	System for photomultiplier tubes characterization and data acquisition for water Cherenkov detectors. Proceedings of SPIE, 2014, , .	0.8	0
54	Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 2013, 50-52, 26-32.	4.3	156

#	Article	lF	CITATIONS
55	On the sensitivity of the HAWC observatory to gamma-ray bursts. Astroparticle Physics, 2012, 35, 641-650.	4.3	100
56	Nuclear dependence of charm production. European Physical Journal C, 2009, 64, 637-644. First observation of the Cabibbo-suppressed decays complements.	3.9	6
57	xmins:mmi= http://www.w3.org/1998/Math/Math/Math/Mitmg= si1.gir overflow="scroll"> <mml:msubsup><mml:mi mathvariant="normal">[ž<mml:mi></mml:mi>+<mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><</mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi </mml:msubsup>	†' क़ॗॖऻॴ:m<br mml:mo>â	io> &mml:msu i^'
58	xmlns:xoc's="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	4.1	252
59	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.els. Physics Observation of a Narrow Charm-Strange MesonDsJ+(2632)â†'Ds+ηandD0K+. Physical Review Letters, 2004, 93, 242001.	7.8	82
60	Two RICH detectors as velocity spectrometers in the CKM experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 502, 62-66.	1.6	8