Zachary R Hunter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204150/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural history of Waldenstr¶m macroglobulinemia following acquired resistance to ibrutinib monotherapy. Haematologica, 2022, 107, 1163-1171.	1.7	11
2	Long-term follow-up of ibrutinib monotherapy in treatment-naive patients with Waldenstrom macroglobulinemia. Leukemia, 2022, 36, 532-539.	3.3	50
3	Venetoclax in Previously Treated Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2022, 40, 63-71.	0.8	53
4	Response and survival predictors in a cohort of 319 patients with Waldenström macroglobulinemia treated with ibrutinib monotherapy. Blood Advances, 2022, 6, 1015-1024.	2.5	12
5	A new role for the SRC family kinase HCK as a driver of SYK activation in MYD88 mutated lymphomas. Blood Advances, 2022, 6, 3332-3338.	2.5	4
6	Partial response or better at sixÂmonths is prognostic of superior progressionâ€free survival in Waldenström macroglobulinaemia patients treated with ibrutinib. British Journal of Haematology, 2021, 192, 542-550.	1.2	8
7	CXCR4 in Waldenström's Macroglobulinema: chances and challenges. Leukemia, 2021, 35, 333-345.	3.3	53
8	Long-Term Follow-Up of Ibrutinib Monotherapy in Symptomatic, Previously Treated Patients With Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2021, 39, 565-575.	0.8	98
9	Targeting of CXCR4 by the Naturally Occurring CXCR4 Antagonist EPI-X4 in Waldenström's Macroglobulinemia. Cancers, 2021, 13, 826.	1.7	15
10	Bone marrow involvement and subclonal diversity impairs detection of mutated <i>CXCR4</i> by diagnostic nextâ€generation sequencing in Waldenström macroglobulinaemia. British Journal of Haematology, 2021, 194, 730-733.	1.2	16
11	Cellâ€free <scp>DNA</scp> analysis for detection of <scp><i>MYD88</i>^{L265P}</scp> and <scp><i>CXCR4</i>^{S338X}</scp> mutations in <scp>W</scp> aldenstr¶m macroglobulinemia. American Journal of Hematology, 2021, 96, E250-E253.	2.0	8
12	The HCK/BTK inhibitor KIN-8194 is active in MYD88-driven lymphomas and overcomes mutated BTKCys481 ibrutinib resistance. Blood, 2021, 138, 1966-1979.	0.6	16
13	Phase 1 study of ibrutinib and the CXCR4 antagonist ulocuplumab in CXCR4-mutated Waldenström macroglobulinemia. Blood, 2021, 138, 1535-1539.	0.6	32
14	Diagnostic Next-generation Sequencing Frequently Fails to Detect MYD88L265P in Waldenström Macroglobulinemia. HemaSphere, 2021, 5, e624.	1.2	15
15	IgM-MM is predominantly a pre–germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood, 2021, 138, 1980-1985.	0.6	11
16	Deepening of response after completing rituximab ontaining therapy in patients with Waldenstrom macroglobulinemia. American Journal of Hematology, 2020, 95, 372-378.	2.0	6
17	Comparative genomics of CXCR4MUT and CXCR4WT single cells in Waldenström's macroglobulinemia. Blood Advances, 2020, 4, 4550-4553.	2.5	3
18	Response and Survival Outcomes to Ibrutinib Monotherapy for Patients With Waldenström Macroglobulinemia on and off Clinical Trials. HemaSphere, 2020, 4, e363.	1.2	12

#	Article	IF	CITATIONS
19	Epigenomics in Waldenström macroglobulinemia. Blood, 2020, 136, 527-529.	0.6	5
20	lxazomib, dexamethasone, and rituximab in treatment-naive patients with Waldenström macroglobulinemia: long-term follow-up. Blood Advances, 2020, 4, 3952-3959.	2.5	35
21	Genomic Landscape of Waldenström Macroglobulinemia and Its Impact on Treatment Strategies. Journal of Clinical Oncology, 2020, 38, 1198-1208.	0.8	103
22	Genomic evolution of ibrutinibâ€resistant clones in Waldenström macroglobulinaemia. British Journal of Haematology, 2020, 189, 1165-1170.	1.2	23
23	<scp>CXCR4</scp> mutational status does not impact outcomes in patients with <scp>W</scp> aldenström macroglobulinemia treated with proteasome inhibitors. American Journal of Hematology, 2020, 95, E95-E98.	2.0	12
24	A matched case-control study comparing features, treatment and outcomes between patients with non-IgM lymphoplasmacytic lymphoma and Waldenström macroglobulinemia. Leukemia and Lymphoma, 2020, 61, 1388-1394.	0.6	9
25	SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer Journal, 2020, 10, 12.	2.8	34
26	Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Advances, 2020, 4, 141-153.	2.5	13
27	Multicenter phase 2 study of daratumumab monotherapy in patients with previously treated Waldenström macroglobulinemia. Blood Advances, 2020, 4, 5089-5092.	2.5	5
28	Genomic and Transcriptomic Characterization of IgM Multiple Myeloma Identifies a Pre-Germinal Center Plasma Cell Disorder with Immature B-Cell Transcription-Factor Signature. Blood, 2020, 136, 7-8.	0.6	0
29	Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldenström Macroglobulinemia. Clinical Cancer Research, 2019, 25, 369-377.	3.2	24
30	CXCR4 mutations affect presentation and outcomes in patients with Waldenström macroglobulinemia: A systematic review. Expert Review of Hematology, 2019, 12, 873-881.	1.0	29
31	<i>CXCR4</i> mutation subtypes impact response and survival outcomes in patients with Waldenström macroglobulinaemia treated with ibrutinib. British Journal of Haematology, 2019, 187, 356-363.	1.2	73
32	Mutated MYD88 regulates transcription of the pro-survival kinase HCK in MYD88 driven B-cell lymphomas Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e338-e339.	0.2	0
33	Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Advances, 2019, 3, 3360-3374.	2.5	25
34	CXCR4 S338X clonality is an important determinant of ibrutinib outcomes in patients with Waldenström macroglobulinemia. Blood Advances, 2019, 3, 2800-2803.	2.5	27
35	The BCR component SYK is activated by mutated MYD88 and the combined inhibition of SYK and BTK produces synthetic lethality in MYD88 driven B-cell lymphomas Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e338.	0.2	0
36	Identifying regulatory mutational densities within Waldenstrom's Macroglobulinemia by whole genome sequencing. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e307.	0.2	0

#	Article	IF	CITATIONS
37	CXCR4 S338X clonality is an important determinant of ibrutinib outcomes in patients with Waldenström macroglobulinemia Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e316-e317.	0.2	1
38	MYD88 and CXCR4 Mutation Rates by Allele-Specific PCR Compared with Diagnostic Next Generation Sequencing Panels in Patients with Waldenstrom's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e317.	0.2	1
39	Clonal Heterogeneity and Immune Tumor Microenvironment in Waldenström Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e318-e319.	0.2	Ο
40	Oncogenic activity of human MYD88L265P mutation in mature B-cells in vivo. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e331.	0.2	0
41	Dysregulation of the B-Cell Receptor Pathway Through Alternative Splicing in Waldenstrom's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e335.	0.2	0
42	Insights into the Genomic Evolution of Ibrutinib Resistant Clones in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e319.	0.2	0
43	Distribution of circulating tumor cells in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e337.	0.2	0
44	Impact of Chromosome 6q Deletions in Multiple Myeloma and Waldenström's Macroglobulinemia by Next Generation RNA Sequencing. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e39.	0.2	0
45	High-dimensional Clonal Heterogeneity and Immune Landscape in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e28-e29.	0.2	0
46	Genomic landscape of Waldenström's macroglobulinemia. HemaSphere, 2019, 3, 58-61.	1.2	1
47	Multicenter prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e39-e40.	0.2	9
48	Cell-Free DNA as Alternative to Bone Marrow CD19+ Selection for Diagnostic MYD88 L265P in Waldenstrom's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e311.	0.2	1
49	<i><scp>TP</scp>53</i> mutations are associated with mutated <i><scp>MYD</scp>88</i> and <i><scp>CXCR</scp>4</i> , and confer an adverse outcome in Waldenström macroglobulinaemia. British Journal of Haematology, 2019, 184, 242-245.	1.2	33
50	Long survival in patients with Waldenström macroglobulinaemia diagnosed at a young age. British Journal of Haematology, 2019, 185, 799-802.	1.2	4
51	Low levels of von Willebrand markers associate with high serum IgM levels and improve with response to therapy, in patients with Waldenström macroglobulinaemia. British Journal of Haematology, 2019, 184, 1011-1014.	1.2	19
52	A Novel HCK and BTK Dual Inhibitor Kin-8194 Shows Superior Activity over Ibrutinib and Overcomes BTKC481S Mediated Ibrutinib Resistance in Vitro and In Vivo in MYD88 Mutated B-Cell Lymphomas. Blood, 2019, 134, 394-394.	0.6	4
53	High-Dimensional Heterogeneity of Waldenström Macroglobulinemia within Its Immune Tumor Microenvironment. Blood, 2019, 134, 3975-3975.	0.6	1
54	Mutated MYD88 Regulates HCK Pro-Survival Signaling through JunB in MYD88 Mutated B-Lymphoma Cells. Blood, 2019, 134, 3778-3778.	0.6	0

#	Article	IF	CITATIONS
55	Myeloma Heterogeneity within Its Complex Immune Ecosystem. Blood, 2019, 134, 4354-4354.	0.6	Ο
56	CXCR4 Mutational Status Does Not Impact Outcomes in Patients with Waldenstrom Macroglobulinemia Treated with Proteasome Inhibitors. Blood, 2019, 134, 2830-2830.	0.6	0
57	Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenström macroglobulinaemia. British Journal of Haematology, 2018, 181, 77-85.	1.2	41
58	BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mechanism. Blood, 2018, 131, 2047-2059.	0.6	61
59	Prospective Clinical Trial of Ixazomib, Dexamethasone, and Rituximab as Primary Therapy in Waldenstr¶m Macroglobulinemia. Clinical Cancer Research, 2018, 24, 3247-3252.	3.2	57
60	Extracellular vesicle–mediated transfer of constitutively active MyD88L265P engages MyD88wt and activates signaling. Blood, 2018, 131, 1720-1729.	0.6	36
61	lbrutinib discontinuation in Waldenström macroglobulinemia: Etiologies, outcomes, and IgM rebound. American Journal of Hematology, 2018, 93, 511-517.	2.0	61
62	<i>MYD88</i> mutated and wild-type Waldenström's Macroglobulinemia: characterization of chromosome 6q gene losses and their mutual exclusivity with mutations in <i>CXCR4</i> . Haematologica, 2018, 103, e408-e411.	1.7	30
63	<i><scp>MYD</scp>88</i> mutations can be used to identify malignant pleural effusions in Waldenström macroglobulinaemia. British Journal of Haematology, 2018, 180, 578-581.	1.2	19
64	<i><scp>MYD</scp>88</i> wildâ€ŧype Waldenstrom Macroglobulinaemia: differential diagnosis, risk of histological transformation, andÂoverall survival. British Journal of Haematology, 2018, 180, 374-380.	1.2	83
65	Comparing apples to oranges: A commentary on the <scp>M</scp> ayo study of <scp>MYD</scp> 88 significance in <scp>W</scp> aldenstrom's macroglobulinemia American Journal of Hematology, 2018, 93, E69-E71.	2.0	1
66	lbrutinib Monotherapy in Symptomatic, Treatment-NaÃ⁻ve Patients With Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2018, 36, 2755-2761.	0.8	142
67	Impact of ibrutinib dose intensity on patient outcomes in previously treated Waldenström macroglobulinemia. Haematologica, 2018, 103, e466-e468.	1.7	18
68	Spotting the elusive Siberian tiger: Complete response to ibrutinib in a patient with Waldenström macroglobulinemia. American Journal of Hematology, 2018, 93, E201.	2.0	1
69	Genomic Landscape of Waldenström Macroglobulinemia. Hematology/Oncology Clinics of North America, 2018, 32, 745-752.	0.9	16
70	Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma. , 2018, , 1419-1431.e5.		0
71	Multicenter Prospective Phase II Study of Venetoclax in Patients with Previously Treated Waldenstrom Macroglobulinemia. Blood, 2018, 132, 2888-2888.	0.6	22
72	Non-IgM Secreting Lymphoplasmacytic Lymphoma - Experience of a Reference Center for Waldenstrom Macroglobulinemia. Blood, 2018, 132, 2886-2886.	0.6	9

#	Article	IF	CITATIONS
73	A Novel HCK Inhibitor Kin-8193 Blocks BTK Activity in BTKCys481 Mutated Ibrutinib Resistant B-Cell Lymphomas Driven By Mutated MYD88. Blood, 2018, 132, 40-40.	0.6	9
74	Alternative Mutations and Isoform Dysregulation in MYD88 in Waldenstrom's Macroglobulinemia. Blood, 2018, 132, 1566-1566.	0.6	4
75	Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Advances, 2018, 2, 2937-2946.	2.5	72
76	Deepening of Response after Completing Rituximab-Containing Primary Therapy in Patients with Waldenstrom Macroglobulinemia. Blood, 2018, 132, 2887-2887.	0.6	1
77	MYD88 Triggered SYK Activation Promotes BCR Cross-Talk, and Identifies SYK As a Novel Therapeutic Target of Mutated MYD88 Signaling. Blood, 2018, 132, 4116-4116.	0.6	1
78	Comprehensive Integration of Whole Genome, Transcriptome and Methylation Profiling Reveals Novel Gene Dysregulation Including IL15, SOCS6 and CARD11 Associated with MYD88 and CXCR4 Genotype Status in WM. Blood, 2018, 132, 1563-1563.	0.6	0
79	Genomic Analysis of Ibrutinib Resistance in Waldenstrom Macroglobulinemia. Blood, 2018, 132, 1372-1372.	0.6	3
80	Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia. Blood, 2017, 129, 2519-2525.	0.6	115
81	Serum IgM level as predictor of symptomatic hyperviscosity in patients with Waldenström macroglobulinaemia. British Journal of Haematology, 2017, 177, 717-725.	1.2	58
82	Novel approaches to targeting MYD88 in Waldenström macroglobulinemia. Expert Review of Hematology, 2017, 10, 739-744.	1.0	6
83	CXCL13 levels are elevated in patients with Waldenström macroglobulinemia, and are predictive of major response to ibrutinib. Haematologica, 2017, 102, e452-e455.	1.7	22
84	To select or not to select? The role of Bâ€cell selection in determining the <i><scp>MYD</scp>88</i> mutation status in Waldenström Macroglobulinaemia. British Journal of Haematology, 2017, 176, 822-824.	1.2	22
85	Targeting Myddosome Assembly in Waldenstrom Macroglobulinaemia. British Journal of Haematology, 2017, 177, 808-813.	1.2	13
86	Ibrutinib penetrates the blood brain barrier and shows efficacy in the therapy of Bing Neel syndrome. British Journal of Haematology, 2017, 179, 339-341.	1.2	56
87	Idelalisib in Waldenström macroglobulinemia: high incidence of hepatotoxicity. Leukemia and Lymphoma, 2017, 58, 1002-1004.	0.6	31
88	Signal Inhibitors in Waldenstrom's Macroglobulinemia. , 2017, , 327-334.		0
89	Genetic and Signaling Abnormalities in Waldenstrom's Macroglobulinemia. , 2017, , 53-65.		1
90	Prospective, Multicenter Clinical Trial of Everolimus as Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Clinical Cancer Research, 2017, 23, 2400-2404.	3.2	23

#	Article	IF	CITATIONS
91	Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia. Journal of Clinical Oncology, 2017, 35, 994-1001.	0.8	76
92	12. Waldenström's macroglobulinemia. , 2016, , 229-244.		0
93	Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood, 2016, 128, 827-838.	0.6	91
94	Future therapeutic options for patients with Waldenström macroglobulinemia. Best Practice and Research in Clinical Haematology, 2016, 29, 206-215.	0.7	4
95	Histological transformation to diffuse large Bâ€cell lymphoma in patients with Waldenström macroglobulinemia. American Journal of Hematology, 2016, 91, 1032-1035.	2.0	53
96	Rituximab intolerance in patients with Waldenström macroglobulinaemia. British Journal of Haematology, 2016, 174, 645-648.	1.2	34
97	Renal disease related to Waldenström macroglobulinaemia: incidence, pathology and clinical outcomes. British Journal of Haematology, 2016, 175, 623-630.	1.2	68
98	HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood, 2016, 127, 3237-3252.	0.6	93
99	Clonal architecture of <i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like mutations in Waldenström Macroglobulinaemia. British Journal of Haematology, 2016, 172, 735-744.	1.2	122
100	Mutated MYD88 Zygosity and CXCR4 Mutation Status Are Important Determinants of Ibrutinib Response and Progression Free Survival in Waldenstrom's Macroglobulinemia. Blood, 2016, 128, 2984-2984.	0.6	8
101	Prospective, Multicenter Clinical Trial of Everolimus As Primary Therapy in Waldenstrom Macroglobulinemia (WMCTG 09-214). Blood, 2016, 128, 4487-4487.	0.6	2
102	HCK Transcription Is Regulated By AP1, NF-Kb and STAT3 Transcription Factors in MYD88 Mutated WM and ABC-DLBCL Cells. Blood, 2016, 128, 2931-2931.	0.6	8
103	The <scp>BCL</scp> 2 antagonist <scp>ABT</scp> â€199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in <i><scp>CXCR</scp>4</i> ^{<i>Wildâ€type</i>} and <i><scp>CXCR</scp>4</i> <scp>CXCR</scp> Mutated Waldenstrom macroglobulinaemia cells British Journal of Haematology 2015, 170, 134-138	1.2	63
104	Incidence of secondary malignancies among patients with <scp>W</scp> aldenström macroglobulinemia: An analysis of the <scp>SEER</scp> database. Cancer, 2015, 121, 2230-2236.	2.0	33
105	Survival outcomes of secondary cancers in patients with waldenström macroglobulinemia: An analysis of the SEER database. American Journal of Hematology, 2015, 90, 696-701.	2.0	20
106	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	15.2	79
107	lbrutinib in Previously Treated Waldenström's Macroglobulinemia. New England Journal of Medicine, 2015, 372, 1430-1440.	13.9	810
108	<i><scp>CXCR</scp>4 </i> <scp>WHIM</scp> â€like frameshift and nonsense mutations promote ibrutinib resistance but do not supplant <i><scp>MYD</scp>88</i> ^{L265P} â€directed survival signalling in <scp>W</scp> aldenström macroglobulinaemia cells. British Journal of Haematology, 2015, 168, 701-707.	1.2	95

#	Article	IF	CITATIONS
109	Overall survival and competing risks of death in patients withÂ <scp>W</scp> aldenström macroglobulinaemia: an analysis of the <scp>S</scp> urveillance, <scp>E</scp> pidemiology and <scp>E</scp> nd <scp>R</scp> esults database. British Journal of Haematology, 2015, 169, 81-89.	1.2	110
110	<i>MYD88</i> Mutations and Response to Ibrutinib in Waldenström's Macroglobulinemia. New England Journal of Medicine, 2015, 373, 584-586.	13.9	212
111	Next Generation Sequencing Identifies a Distinct Transcriptional Profile, Including Isoform Dysregulation That Segue with Genomic Alterations in Waldenstrom's Macoglobulinemia. Blood, 2015, 126, 128-128.	0.6	1
112	The Clonal Architecture of CXCR4mutations in Waldenstrom's Macroglobulinemia Shows Highly Variable Subclonal Distribution, and Multiple Mutations within Individual Patients Indicative of Targeted Genomic Instability. Blood, 2015, 126, 1486-1486.	0.6	1
113	HCK Is a Highly Relevant Target of Ibrutinib in MYD88 Mutated Waldenstrom's Macroglobulinemia and Diffuse Large B-Cell Lymphoma. Blood, 2015, 126, 705-705.	0.6	3
114	Targeting Myddosome Self-Assembly in Waldenstrom's Macroglobulinemia. Blood, 2015, 126, 1563-1563.	0.6	0
115	Transcriptional repression of plasma cell differentiation is orchestrated by aberrant over-expression of the ETS factor xi>SPIBin Waldenström macroglobulinaemia. British Journal of Haematology, 2014, 166, 677-689.	1.2	16
116	The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood, 2014, 123, 1637-1646.	0.6	394
117	MYD88-independent growth and survival effects of Sp1 transactivation in Waldenström macroglobulinemia. Blood, 2014, 123, 2673-2681.	0.6	16
118	Waldenström Macroglobulinemia. Hematology/Oncology Clinics of North America, 2014, 28, 945-970.	0.9	21
119	Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood, 2014, 123, 2791-2796.	0.6	337
120	Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenström's macroglobulinemia. Blood, 2014, 124, 503-510.	0.6	168
121	Survival trends in Waldenström macroglobulinemia: an analysis of the Surveillance, Epidemiology and End Results database. Blood, 2014, 123, 3999-4000.	0.6	91
122	Patients With Waldenström Macroglobulinemia Commonly Present With Iron Deficiency and Those With Severely Depressed Transferrin Saturation Levels Show Response to Parenteral Iron Administration. Clinical Lymphoma, Myeloma and Leukemia, 2013, 13, 241-243.	0.2	17
123	MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood, 2013, 121, 2051-2058.	0.6	368
124	A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in WaldenstrA¶m macroglobulinemia. Blood, 2013, 122, 1222-1232.	0.6	306
125	A new era for Waldenstrom macroglobulinemia: MYD88 L265P. Blood, 2013, 121, 4434-4436.	0.6	50
126	A Prospective Multicenter Study Of The Bruton's Tyrosine Kinase Inhibitor Ibrutinib In Patients With Relapsed Or Refractory Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 251-251.	0.6	34

#	Article	IF	CITATIONS
127	PI3K/AKT Pathway Is Activated By MYD88 L265P and Use Of PI3K-Delta Inhibitors Induces Robust Tumor Cell Killing In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 4255-4255.	0.6	9
128	Somatic Activating Mutations In CXCR4 Are Common In Patients With Waldenstrom's Macroglobulinemia, and Their Expression In WM Cells Promotes Resistance To Ibrutinib. Blood, 2013, 122, 4424-4424.	0.6	6
129	Carfilzomib, Rituximab and Dexamethasone (CaRD) Is Highly Active and Offers a Neuropathy Sparing Approach For Proteasome-Inhibitor Based Therapy In Waldenstrom's Macroglobulinemia. Blood, 2013, 122, 757-757.	0.6	6
130	Telomerase Contributes To Repair Of DNA Breaks In Myeloma Cells By Incorporating "TTAGGG― Sequences Within Genome: Biological and Translational Significance. Blood, 2013, 122, 1249-1249.	0.6	0
131	Molecular and Cellular Effects of NEDD8-Activating Enzyme Inhibition in Myeloma. Molecular Cancer Therapeutics, 2012, 11, 942-951.	1.9	49
132	Family history of non-hematologic cancers among Waldenstrom macroglobulinemia patients: A preliminary study. Cancer Epidemiology, 2012, 36, 294-297.	0.8	13
133	Familial Disease Predisposition Impacts Treatment Outcome in Patients With Waldenström Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2012, 12, 433-437.	0.2	24
134	MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia. New England Journal of Medicine, 2012, 367, 826-833.	13.9	1,142
135	Whole Genome Sequencing Identifies Recurring Somatic Mutations in the C-Terminal Domain of CXCR4, Including a Gain of Function Mutation in Waldenstrom's Macroglobinemia Blood, 2012, 120, 2715-2715.	0.6	1
136	Participation of BTK in MYD88 signaling in malignant cells expressing the L265P mutation in Waldenstrom's macroglobulinemia, and effect on tumor cells with BTK-inhibitor PCI-32765 in combination with MYD88 pathway inhibitors Journal of Clinical Oncology, 2012, 30, 8106-8106.	0.8	4
137	Abstract 2934: Targeting Bruton's tyrosine kinase with PCI-32765 blocks growth and survival of multiple myeloma and Waldenström macroglobulinemia via potent inhibition of osteoclastogenesis, cytokines/chemokine secretion, and myeloma stem-like cells in the bone marrow microenvironment. , 2012		0
138	MYD88 L265P Promotes Survival of Waldenstrom's Macroglobulinemia Cells by Activation of Bruton's Tyrosine Kinase. Blood, 2012, 120, 897-897.	0.6	1
139	Associated Malignancies in Patients with Waldenström's Macroglobulinemia and Their Kin. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 88-92.	0.2	35
140	Histone Deacetylase Inhibitors Demonstrate Significant Preclinical Activity as Single Agents, and in Combination with Bortezomib in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 152-156.	0.2	22
141	Hepcidin Is Produced by Lymphoplasmacytic Cells and Is Associated With Anemia in Waldenström's Macroglobulinemia. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 160-163.	0.2	33
142	Matrix Metalloproteinase-8 Is Overexpressed in Waldenström's Macroglobulinemia Cells, and Specific Inhibition of this Metalloproteinase Blocks Release of Soluble CD27. Clinical Lymphoma, Myeloma and Leukemia, 2011, 11, 172-175.	0.2	14
143	Vorinostat induced cellular stress disrupts the p38 mitogen activated protein kinase and extracellular signal regulated kinase pathways leading to apoptosis in Waldenström macroglobulinemia cells. Leukemia and Lymphoma, 2011, 52, 1777-1786.	0.6	9
144	Maintenance Rituximab is associated with improved clinical outcome in rituximab naÃ⁻ve patients with Waldenstrom Macroglobulinaemia who respond to a rituximabâ€containing regimen. British Journal of Haematology, 2011, 154, 357-362.	1.2	92

#	Article	IF	CITATIONS
145	Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenström macroglobulinemia. Blood, 2011, 117, 2918-2923.	0.6	37
146	Long-term follow-up of symptomatic patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia treated with the anti-CD52 monoclonal antibody alemtuzumab. Blood, 2011, 118, 276-281.	0.6	42
147	Attainment of complete/very good partial response following rituximabâ€based therapy is an important determinant to progressionâ€free survival, and is impacted by polymorphisms in <i>FCGR3A</i> in Waldenstrom macroglobulinaemia. British Journal of Haematology, 2011, 154, 223-228.	1.2	61
148	Treatment with a Bortezomib-Containing Regimen Is Associated with Better Therapeutic Outcomes in Patients with Waldenstrom's Macroglobulinemia Who Have Familial Disease Predisposition. Blood, 2011, 118, 1643-1643.	0.6	3
149	A Somatic Variant in MYD88 (L265P) Revealed by Whole Genome Sequencing Differentiates Lymphoplasmacytic Lymphoma From Marginal Zone Lymphomas. Blood, 2011, 118, 261-261.	0.6	8
150	Whole Genome Sequencing Reveals a Widely Expressed Mutation (MYD88 L265P) with Oncogenic Activity in Waldenstrom's Macroglobulinemia. Blood, 2011, 118, 300-300.	0.6	15
151	IgA and IgG hypogammaglobulinemia in Waldenstrom's macroglobulinemia. Haematologica, 2010, 95, 470-475.	1.7	53
152	The Rituximab and IVIG Related IgM Flare In Waldenstrom's Macroglobulinemia Is Associated with Monocytic Activation of Fcgriia Signaling, and Triggering of IL-6 Release by the PI3K/AKT and MAPK Pathways. Blood, 2010, 116, 2870-2870.	0.6	4
153	The Anti-CD20 Monoclonal Antibody GA101 Displays More Robust Anti-Tumor Activity Versus Rituximab In Waldenstrom's Macroglobulinemia (WM). Blood, 2010, 116, 4904-4904.	0.6	1
154	MLN4924, a Novel Investigational NEDD8 Activating Enzyme Inhibitor, Exhibits Preclinical Activity In Multiple Myeloma and Waldenstrol m's Macroglobulinemia through Mechanism Distinct From Existing Proteasome Inhibitors. Blood, 2010, 116, 2988-2988.	0.6	2
155	Aberrant Expression of Regulatory miRNAs and Transcripts for IRS-PI3K Growth and Survival Signaling In Waldenstrom's Macroglobulinemia. Blood, 2010, 116, 1912-1912.	0.6	2
156	Involvement of Lipogenic Pathway In 5-Azacytidine-Induced Cytotoxicity In Waldenstrom's Macroglobulinemia. Blood, 2010, 116, 2991-2991.	0.6	0
157	Involvement of Ets Factor Spi-B and Id2 In WaldenstroÌ^m's Macroglobulinemia. Blood, 2010, 116, 129-129.	0.6	22
158	Microarray Analysis of the Peripheral Monocytes From Waldenstrom's Macroglobulinemia Patients Reveals a Distinct Gene Expression Profile. Blood, 2010, 116, 2010-2010.	0.6	2
159	Associated Malignancies Among Patients and Kin with Waldenstrom's Macroglobulinemia. Blood, 2010, 116, 4159-4159.	0.6	0
160	Comprehensive Assessment of Cytokines and Chemokines In Patients with Waldenstrom's Macroglobulinemia Reveals a Distinct Profile with Pathobiological and Clinical Relevance. Blood, 2010, 116, 1911-1911.	0.6	1
161	Increased Incidence of Transformation and Myelodysplasia/Acute Leukemia in Patients With Waldenstr¶m Macroglobulinemia Treated With Nucleoside Analogs. Journal of Clinical Oncology, 2009, 27, 250-255.	0.8	170
162	Lenalidomide and Rituximab in Waldenstrom's Macroglobulinemia. Clinical Cancer Research, 2009, 15, 355-360.	3.2	124

#	Article	IF	CITATIONS
163	Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom Macroglobulinemia. British Journal of Haematology, 2009, 145, 59-63.	1.2	17
164	Comparative Outcomes Following CP-R, CVP-R, and CHOP-R in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2009, 9, 62-66.	1.4	63
165	Balancing Risk Versus Benefit in the Treatment of Waldenström's Macroglobulinemia Patients with Nucleoside Analogue–Based Therapy. Clinical Lymphoma and Myeloma, 2009, 9, 71-73.	1.4	40
166	Endoplasmic reticulum stress is a target for therapy in Waldenstrom macroglobulinemia. Blood, 2009, 113, 626-634.	0.6	20
167	Patients with Waldenstrom's Macroglobulinemia Are Often Hypoferremic That Is Refractory to Oral Iron Repletion and Responsive to Parental Iron Infusions, and Demonstrate Elevated Levels of Hepcidin Blood, 2009, 114, 2952-2952.	0.6	1
168	The Inhibitory Receptor FcgRIIB Is Overexpressed, and Its Ligation by Anti- FcgRIIB Antibodies Suppresses IgM Production and Induces Apoptosis in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 3736-3736.	0.6	5
169	Maintenance Rituximab Is Associated with Improved Progression Free and Overall Survival in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 3750-3750.	0.6	1
170	Gene Expression Profiling Distinguishes Waldenstrom's Macroglobulinemia Patients Presenting with Familial Disease, Advanced IPSS Prognostic Score, and Previous Treatment with Rituximab Blood, 2009, 114, 3930-3930.	0.6	1
171	Progression Free Survival Is Predicated by Categorical Response, and Supports the Attainment of VGPR/CR as An Objective for Long Term Disease Control in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 4993-4993.	0.6	1
172	The IgM Flare Following Rituximab and IVIG Administration in Waldenstrom's Macroglobulinemia Is Related to IL-6 Production by Bystander Immune Cells, Possibly through Stimulation of the Fcgriia Receptor Blood, 2009, 114, 761-761.	0.6	7
173	Genome Wide Association Studies of Familial Waldenstrom's Macroglobulinemia (WM) Reveals a Loss of GSTM1 Is Common in Families with a History of B-Cell Disorders but Not in Those with a History Specific for WM Blood, 2009, 114, 762-762.	0.6	1
174	IgA and IgG Hypogammaglobulinemia Does Not Predict for Recurrent Infection Risk and Persists Despite Therapeutic Response in Patients with Waldentrom's Macroglobulinemia Blood, 2009, 114, 1947-1947.	0.6	0
175	Cholesterol Regulation and Statin Therapy in Patients with Waldenstrom's Macroglobulinemia Blood, 2009, 114, 4789-4789.	0.6	0
176	Vorinostat Induced Cellular Stress Disrupts the Balance Between p38 MAPK and Erk Pathways Leading to Apoptosis in WM Cells Blood, 2009, 114, 3740-3740.	0.6	1
177	Histone Deacetylase Inhibitors Demonstrate Significant Preclinical Activity as Single Agents, and in Combination with Bortezomib in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 4785-4785.	0.6	14
178	Micro-RNA Expression Profiling Reveals Distinct Correlates to Disease Pathogenesis, and Identifies Novel Pathways Involved in Tumor Cell Senescence and IL-12A Signaling Blood, 2009, 114, 2950-2950.	0.6	0
179	Involvement of Ets Factor Spi-B, E Protein E2-2, and Id2 in WaldenstroÌ^m's Macroglobulinemia Blood, 2009, 114, 2946-2946.	0.6	0
180	Polymorphisms of FcγRIIA, FcγRIIB, and FcγRIIIA and Therapeutic Response to Rituximab Combination Therapy in Patients with Waldenstrom's Macroglobulinemia Blood, 2009, 114, 2949-2949.	0.6	0

#	Article	IF	CITATIONS
181	Aberrant DNA Methylation and Transcriptional Silencing of DLC-1 in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 2954-2954.	0.6	1
182	Involvement of Fatty Acid Synthase in Azacytidine-Induced Cytotoxicity in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 3731-3731.	0.6	0
183	The HMG oA inhibitor, simvastatin, triggers <i>in vitro</i> antiâ€ŧumour effect and decreases IgM secretion in Waldenstrom macroglobulinaemia. British Journal of Haematology, 2008, 142, 775-785.	1.2	21
184	Clinical relevance of soluble HLA class I molecules in Waldenstrom Macroglobulinemia. European Journal of Haematology, 2008, 80, 503-509.	1.1	4
185	CD27-CD70 interactions in the pathogenesis of Waldenström macroglobulinemia. Blood, 2008, 112, 4683-4689.	0.6	74
186	Targeting NF-κB in Waldenstrom macroglobulinemia. Blood, 2008, 111, 5068-5077.	0.6	106
187	Thalidomide and rituximab in Waldenstrom macroglobulinemia. Blood, 2008, 112, 4452-4457.	0.6	135
188	IgA and IgG Hypogammaglobulinemia Is a Constitutive Feature in Most Waldenstrom's Macroglobulinemia Patients and May Be Related to Mutations Associated with Common Variable Immunodeficiency Disorder (CVID). Blood, 2008, 112, 3749-3749.	0.6	5
189	Multicenter Clinical Trial of Bortezomib in Relapsed/Refractory Waldenstrom's Macroglobulinemia: Results of WMCTG Trial 03-248. Clinical Cancer Research, 2007, 13, 3320-3325.	3.2	186
190	Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fcl ³ RIIIa-158 V/V and V/F polymorphism. Blood, 2007, 110, 2561-2564.	0.6	244
191	Genetic Linkage of FcgγRIIa and FcγRIIIa and Implications for Their Use in Predicting Clinical Responses to CD20-Directed Monoclonal Antibody Therapy. Clinical Lymphoma and Myeloma, 2007, 7, 286-290.	1.4	30
192	Novel Agents in the Treatment of Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2007, 7, S199-S206.	1.4	15
193	Hepatitis C viral infection is not associated with Waldenström's macroglobulinemia. American Journal of Hematology, 2007, 82, 83-84.	2.0	64
194	Establishment of BCWM.1 cell line for Waldenström's macroglobulinemia with productive in vivo engraftment in SCID-hu mice. Experimental Hematology, 2007, 35, 1366-1375.	0.2	61
195	Imatinib Mesylate (Gleevec®) Produces Responses in Patients with Relapsed/Refractory Waldenstrom's Macroglobulinemia Blood, 2007, 110, 2575-2575.	0.6	3
196	Comprehensive Molecular Characterization of Malignant and Microenvironmental Cells in Waldenstrom's Macroglobulinemia by Gene Expression Profiling Blood, 2007, 110, 3174-3174.	0.6	8
197	Biological Sequelae of TRAF2 Downregulation in Waldenstrom Macroglobulinemia Cells Blood, 2007, 110, 3526-3526.	0.6	4
198	Targeting NF-kB by Perifosine, Bortezomib and Rituximab in Waldenstrom Macroglobulinemia (WM) Blood, 2007, 110, 2512-2512.	0.6	0

#	Article	IF	CITATIONS
199	CD52 Is Expressed on Human Mast Cells and Is a Potential Therapeutic Target in Waldenström's Macroglobulinemia and Mast Cell Disorders. Clinical Lymphoma and Myeloma, 2006, 6, 478-483.	1.4	41
200	Hyperviscosity-Related Retinopathy in Waldenström Macroglobulinemia. JAMA Ophthalmology, 2006, 124, 1601.	2.6	94
201	IgA and IgG Hypogammaglobulinemia Are Associated with Mutations in the APRIL/BLYS Receptor TACI in Waldenstrom's Macroglobulinemia (WM) Blood, 2006, 108, 228-228.	0.6	28
202	Serum Free Light Chain in Waldenstrom Macroglobulinemia Blood, 2006, 108, 2420-2420.	0.6	11
203	Preclinical In Vitro and In Vivo Evidence Support a Therapeutic Role for the CD70 Directed Monoclonal Antibody (SGN-70) in Waldenstrol ̂m's Macroglobulinemia (WM) Blood, 2006, 108, 2490-2490.	0.6	4
204	Novel Agent Perifosine Enhances Antitumor Activity of Bortezomib, Rituximab and Other Conventional Therapies in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 2517-2517.	0.6	3
205	Bortezomib, Dexamethasone and Rituximab (BDR) Is a Highly Active Regimen in the Primary Therapy of Waldenstrom's Macroglobulinemia: Planned Interim Results of WMCTG Clinical Trial 05-180 Blood, 2006, 108, 2765-2765.	0.6	10
206	Abnormalities in Lipoprotein Metabolism Provide Insight into Novel Therapeutic Approaches for Waldenstrom's Macroglobulinemia (WM) Blood, 2006, 108, 4749-4749.	0.6	2
207	Endoplasmic Reticulum Stress Is a Target for Therapy in Waldenstrom's Macroglobulinemia (WM) Blood, 2006, 108, 4641-4641.	0.6	0
208	Imatinib Mesylate (Gleevec®) Is Active in Relapsed/Refractory Waldenstrom's Macroglobulinemia: Planned Interim Results of WMCTG Clinical Trial 05-140 Blood, 2006, 108, 2484-2484.	0.6	2
209	Abnormal Expression of TRAF Adapter Proteins in Waldenstrom's Macroglobulinemia Blood, 2006, 108, 4640-4640.	0.6	Ο
210	Analysis of Chemokine and Adhesion Markers in Waldenstrom Macroglobulinemia Blood, 2006, 108, 4653-4653.	0.6	0
211	CD5, CD10, and CD23 Expression in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2005, 5, 246-249.	2.1	71
212	CHOP plus Rituximab Therapy in Waldenström's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2005, 5, 273-277.	2.1	55
213	Abnormal Expression of the Plasma Cell Differentiation Factor X-Box Protein 1 (Xbp-1) in Waldenstrom's Macroglobulinemia Blood, 2005, 106, 1003-1003.	0.6	2
214	Phase II Study of CC-5013 (Revlimid) and Rituximab in WaldenstroÌ^m's Macroglobulinemia: Preliminary Safety and Efficacy Results Blood, 2005, 106, 2443-2443.	0.6	7
215	A Novel Functional Role for Soluble CD27 in the Pathogenesis of Waldenstrom's Macroglobulinemia Blood, 2005, 106, 4701-4701.	0.6	6
216	Individuals Expressing Fcl ³ RIIIA-158 V/V and V/F Show Increased NK Cell Surface Expression of FcgRIIIA (CD16), Rituximab Binding, and Demonstrate Higher Levels of ADCC Activity in Response to Rituximab Blood, 2005, 106, 776-776.	0.6	3

#	Article	IF	CITATIONS
217	Establishment of a Waldenstrom's Macroglobulinemia Cell Line (BCWM.1) with Productive In Vivo Engraftment in SCID-hu Mice Blood, 2005, 106, 979-979.	0.6	5
218	Bone Marrow Mast Cells Are Significantly Increased in Patients with Waldenstrom's Macroglobulinemia, and Their Number Following Therapeutic Intervention Is Dependent on Extent of Response Blood, 2005, 106, 980-980.	0.6	3
219	Clinical Responses to Sildenafil in Waldenstrom's Macroglobulinemia. Clinical Lymphoma and Myeloma, 2004, 5, 205-207.	2.1	26
220	B-Lymphocyte Stimulator Protein (BLYS) Is Expressed by Bone Marrow Mast and Lymphoplasmacytic Cells in Waldenstrom's Macroglobulinemia, and Provides Signaling for Growth, Survival and IgM Secretion Blood, 2004, 104, 3358-3358.	0.6	13
221	High Levels of Soluble Immunoregulatory Receptors in Patients with Waldenstrol̀^M's Macroglobulinemia Blood, 2004, 104, 4881-4881.	0.6	4
222	Vascular Endothelial Growth Factor (VEGF) Is a Growth and Survival Factor in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 4892-4892.	0.6	2
223	lgA and IgG Hypogammaglobulinemia Persists in Most Patients with Waldenstrom's Macroglobulinemia Despite Therapeutic Responses, Including Complete Remissions Blood, 2004, 104, 4896-4896.	0.6	5
224	Campath-1H in WaldenstroÌ^m's Macroglobulinemia Blood, 2004, 104, 4924-4924.	0.6	4
225	Lymphoplasmacytic Cells and Mast Cells Are Targets for Imatinib Mesylate (Gleevec, Glivec) in Waldenstrom's Macroglobulinemia Blood, 2004, 104, 4929-4929.	0.6	2