
Rui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204042/publications.pdf Version: 2024-02-01

ΡΗΙ ΜΑΝΟ

#	Article	IF	CITATIONS
1	The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen. Bulletin of the Geological Society of America, 2022, 134, 681-690.	3.3	31
2	Petrogenesis of lamprophyre in Sawur, northern Xinjiang, China: Implication for volcanic hosted gold deposits. Ore Geology Reviews, 2022, 144, 104856.	2.7	2
3	Magmatic evolution and formation of the giant Jiama porphyry-skarn deposit in southern Tibet. Ore Geology Reviews, 2022, 145, 104889.	2.7	8
4	Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science (Wuhan, China), 2022, 33, 681-695.	3.2	2
5	Preservation of Xiuwacu W-Mo deposit and its constraint on the uplifting history of Eastern Tibetan Plateau. Ore Geology Reviews, 2021, 132, 103995.	2.7	6
6	Nb-Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 2021, 133, 104131.	2.7	5
7	Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet. Ore Geology Reviews, 2021, 134, 104156.	2.7	8
8	Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting. Ore Geology Reviews, 2021, 139, 104455.	2.7	7
9	Mafic Microgranular Enclaves Formed by Gas-driven Filter Pressing During Rapid Cooling: an Example from the Gangdese Batholith in Southern Tibet. Journal of Petrology, 2021, 61, .	2.8	6
10	Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit. Ore Geology Reviews, 2020, 116, 103265.	2.7	10
11	Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances, 2020, 6, eaba6342.	10.3	34
12	Hydrothermal evolution and ore genesis of the Laozuoshan Au skarn deposit, northeast China: Constrains from mineralogy, fluid inclusion, and O–C–S–Pb isotope geochemistry. Ore Geology Reviews, 2020, 127, 103879.	2.7	7
13	Highâ€Resolution 3â€Ð Shear Wave Velocity Model of the Tibetan Plateau: Implications for Crustal Deformation and Porphyry Cu Deposit Formation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019215.	3.4	29
14	From subduction to postâ€collision: Early Permianâ€middle Triassic magmatic records from Langshan Belt, Central Asian Orogenic Belt. Geological Journal, 2020, 55, 2167-2184.	1.3	3
15	Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 2020, 63, 2042-2067.	5.2	56
16	Fingerprinting metal transfer from mantle. Nature Communications, 2019, 10, 3510.	12.8	30
17	Origin of giant postâ€collisional porphyry Cu metallogenic belt in southern Tibet: constrains from magmatic H2O, <i>f</i> O2, and S. Acta Geologica Sinica, 2019, 93, 241-242.	1.4	1
18	Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U–Pb dating, and Hf isotope analysis. Ore Geology Reviews, 2019, 107, 820-836.	2.7	7

Rui Wang

#	Article	IF	CITATIONS
19	Constructing the Early Mesozoic Gangdese Crust in Southern Tibet by Hornblende-dominated Magmatic Differentiation. Journal of Petrology, 2019, 60, 515-552.	2.8	79
20	Crustal reworking at convergent margins traced by Fe isotopes in I-type intrusions from the Gangdese arc, Tibetan Plateau. Chemical Geology, 2019, 510, 47-55.	3.3	8
21	Generation of leucogranites via fractional crystallization: A case from the Late Triassic Luoza batholith in the Lhasa Terrane, southern Tibet. Gondwana Research, 2019, 66, 63-76.	6.0	28
22	Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China. Lithos, 2019, 324-325, 39-54.	1.4	32
23	Origin of the ca. 50†Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet. Lithos, 2018, 304-307, 374-387.	1.4	35
24	Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 2018, 181, 122-143.	9.1	160
25	Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet. Gondwana Research, 2018, 62, 178-197.	6.0	61
26	Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: Implications for post-magmatic fluid activity and ore genesis. American Mineralogist, 2018, 103, 1891-1905.	1.9	13
27	Constructing the Eastern Margin of the Tibetan Plateau During the Late Triassic. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,449.	3.4	24
28	Westward-younging high-Mg adakitic magmatism in central Tibet: Record of a westward-migrating lithospheric foundering beneath the Lhasa–Qiangtang collision zone during the Late Cretaceous. Lithos, 2018, 316-317, 92-103.	1.4	25
29	Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu Au mineralization. Chemical Geology, 2017, 451, 116-134.	3.3	54
30	Society of Economic Geologists Silver Medal for 2015. Economic Geology, 2017, 112, 214-214.	3.8	0
31	In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet. Ore Geology Reviews, 2017, 90, 1063-1077.	2.7	25
32	White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Economic Geology, 2017, 112, 1153-1176.	3.8	58
33	Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 2017, 45, 563-566.	4.4	145
34	Reply to the comments on "Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust― Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	5
35	Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	52
36	The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 2015, 150, 68-94.	9.1	118

Rui Wang

#	Article	IF	CITATIONS
37	THE GEOLOGY AND MINERALOGY OF THE BEIYA SKARN GOLD DEPOSIT IN YUNNAN, SOUTHWEST CHINA. Economic Geology, 2015, 110, 1625-1641.	3.8	75
38	Zircon U–Pb age and Sr–Nd–Hf–O isotope geochemistry of the Paleocene–Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff. Lithos, 2015, 224-225, 179-194.	1.4	71
39	Lower-Crustal Magmatic Hornblendite in North China Craton: Insight into the Genesis of Porphyry Cu Deposits. Economic Geology, 2015, 110, 1879-1904.	3.8	20
40	Extent of underthrusting of the Indian plate beneath Tibet controlled the distribution of Miocene porphyry Cu–Mo ± Au deposits. Mineralium Deposita, 2014, 49, 165-173.	4.1	66
41	Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo Au Mineralization. Economic Geology, 2014, 109, 1943-1965.	3.8	179
42	Increased Magmatic Water ContentThe Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 2014, 109, 1315-1339.	3.8	179
43	Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: Implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet. Bulletin of the Geological Society of America, 0, , .	3.3	11
44	Cumulate mush hybridization by melt invasion: Evidence from compositionally-diverse amphiboles in ultramafic-mafic arc cumulates within the eastern Gangdese Batholith, southern Tibet. Journal of Petrology, 0, , .	2.8	6
45	Qia'erdunbasixi Fe–Cu Deposit in Sawur, Xinjiang: A Case Study of Skarn Deposit Hosted by Volcanic Rock. Frontiers in Earth Science, 0, 10, .	1.8	0