Rui Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo Au Mineralization. Economic Geology, 2014, 109, 1943-1965.	3.8	179
2	Increased Magmatic Water ContentThe Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 2014, 109, 1315-1339.	3.8	179
3	Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Science Reviews, 2018, 181, 122-143.	9.1	160
4	Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology, 2017, 45, 563-566.	4.4	145
5	The role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu–Mo deposits in the Gangdese belt, southern Tibet. Earth-Science Reviews, 2015, 150, 68-94.	9.1	118
6	Constructing the Early Mesozoic Gangdese Crust in Southern Tibet by Hornblende-dominated Magmatic Differentiation. Journal of Petrology, 2019, 60, 515-552.	2.8	79
7	THE GEOLOGY AND MINERALOGY OF THE BEIYA SKARN GOLD DEPOSIT IN YUNNAN, SOUTHWEST CHINA. Economic Geology, 2015, 110, 1625-1641.	3.8	75
8	Zircon U–Pb age and Sr–Nd–Hf–O isotope geochemistry of the Paleocene–Eocene igneous rocks in western Gangdese: Evidence for the timing of Neo-Tethyan slab breakoff. Lithos, 2015, 224-225, 179-194.	1.4	71
9	Extent of underthrusting of the Indian plate beneath Tibet controlled the distribution of Miocene porphyry Cu–Mo ± Au deposits. Mineralium Deposita, 2014, 49, 165-173.	4.1	66
10	Hot Paleocene-Eocene Gangdese arc: Growth of continental crust in southern Tibet. Gondwana Research, 2018, 62, 178-197.	6.0	61
11	White Mica as a Hyperspectral Tool in Exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Economic Geology, 2017, 112, 1153-1176.	3.8	58
12	Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 2020, 63, 2042-2067.	5.2	56
13	Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu Au mineralization. Chemical Geology, 2017, 451, 116-134.	3.3	54
14	Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	52
15	Origin of the ca. 50â€ ⁻ Ma Linzizong shoshonitic volcanic rocks in the eastern Gangdese arc, southern Tibet. Lithos, 2018, 304-307, 374-387.	1.4	35
16	Crustal thickening and endogenic oxidation of magmatic sulfur. Science Advances, 2020, 6, eaba6342.	10.3	34
17	Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China. Lithos, 2019, 324-325, 39-54.	1.4	32
18	The impact of a tear in the subducted Indian plate on the Miocene geology of the Himalayan-Tibetan orogen. Bulletin of the Geological Society of America, 2022, 134, 681-690.	3.3	31

Rui Wang

#	Article	IF	CITATIONS
19	Fingerprinting metal transfer from mantle. Nature Communications, 2019, 10, 3510.	12.8	30
20	Highâ€Resolution 3â€D Shear Wave Velocity Model of the Tibetan Plateau: Implications for Crustal Deformation and Porphyry Cu Deposit Formation. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019215.	3.4	29
21	Generation of leucogranites via fractional crystallization: A case from the Late Triassic Luoza batholith in the Lhasa Terrane, southern Tibet. Gondwana Research, 2019, 66, 63-76.	6.0	28
22	In situ elemental and isotopic study of diorite intrusions: Implication for Jurassic arc magmatism and porphyry Cu-Au mineralisation in southern Tibet. Ore Geology Reviews, 2017, 90, 1063-1077.	2.7	25
23	Westward-younging high-Mg adakitic magmatism in central Tibet: Record of a westward-migrating lithospheric foundering beneath the Lhasa–Qiangtang collision zone during the Late Cretaceous. Lithos, 2018, 316-317, 92-103.	1.4	25
24	Constructing the Eastern Margin of the Tibetan Plateau During the Late Triassic. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,449.	3.4	24
25	Lower-Crustal Magmatic Hornblendite in North China Craton: Insight into the Genesis of Porphyry Cu Deposits. Economic Geology, 2015, 110, 1879-1904.	3.8	20
26	Archaean hydrothermal fluid modified zircons at Sunrise Dam and Kanowna Belle gold deposits, Western Australia: Implications for post-magmatic fluid activity and ore genesis. American Mineralogist, 2018, 103, 1891-1905.	1.9	13
27	Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: Implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet. Bulletin of the Geological Society of America, 0, , .	3.3	11
28	Indosinian magmatism and rare metal mineralization in East Tianshan orogenic belt: An example study of Jingerquan Li-Be-Nb-Ta pegmatite deposit. Ore Geology Reviews, 2020, 116, 103265.	2.7	10
29	Crustal reworking at convergent margins traced by Fe isotopes in I-type intrusions from the Gangdese arc, Tibetan Plateau. Chemical Geology, 2019, 510, 47-55.	3.3	8
30	Significance of chlorite hyperspectral and geochemical characteristics in exploration: A case study of the giant Qulong porphyry Cu-Mo deposit in collisional orogen, Southern Tibet. Ore Geology Reviews, 2021, 134, 104156.	2.7	8
31	Magmatic evolution and formation of the giant Jiama porphyry-skarn deposit in southern Tibet. Ore Geology Reviews, 2022, 145, 104889.	2.7	8
32	Origin of a Miocene alkaline–carbonatite complex in the Dunkeldik area of Pamir, Tajikistan: Petrology, geochemistry, LA–ICP–MS zircon U–Pb dating, and Hf isotope analysis. Ore Geology Reviews, 2019, 107, 820-836.	2.7	7
33	Hydrothermal evolution and ore genesis of the Laozuoshan Au skarn deposit, northeast China: Constrains from mineralogy, fluid inclusion, and O–C–S–Pb isotope geochemistry. Ore Geology Reviews, 2020, 127, 103879.	2.7	7
34	Multi-scale exploration of giant Qulong porphyry deposit in a collisional setting. Ore Geology Reviews, 2021, 139, 104455.	2.7	7
35	Preservation of Xiuwacu W-Mo deposit and its constraint on the uplifting history of Eastern Tibetan Plateau. Ore Geology Reviews, 2021, 132, 103995.	2.7	6
36	Cumulate mush hybridization by melt invasion: Evidence from compositionally-diverse amphiboles in ultramafic-mafic arc cumulates within the eastern Gangdese Batholith, southern Tibet. Journal of Petrology, 0, , .	2.8	6

Rui Wang

#	Article	IF	CITATIONS
37	Mafic Microgranular Enclaves Formed by Gas-driven Filter Pressing During Rapid Cooling: an Example from the Gangdese Batholith in Southern Tibet. Journal of Petrology, 2021, 61, .	2.8	6
38	Reply to the comments on "Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust–mantle mixing and metamorphism in the deep crust― Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	5
39	Nb-Ta systematics of Kohistan and Gangdese arc lower crust: Implications for continental crust formation. Ore Geology Reviews, 2021, 133, 104131.	2.7	5
40	From subduction to postâ€collision: Early Permianâ€middle Triassic magmatic records from Langshan Belt, Central Asian Orogenic Belt. Geological Journal, 2020, 55, 2167-2184.	1.3	3
41	Petrogenesis of lamprophyre in Sawur, northern Xinjiang, China: Implication for volcanic hosted gold deposits. Ore Geology Reviews, 2022, 144, 104856.	2.7	2
42	Geochronology, Geochemistry and Geological Significance of Volcanic Rocks of the Bangba District, Western Segment of the Central Lhasa Subterrane. Journal of Earth Science (Wuhan, China), 2022, 33, 681-695.	3.2	2
43	Origin of giant postâ€collisional porphyry Cu metallogenic belt in southern Tibet: constrains from magmatic H2O, <i>f</i> O2, and S. Acta Geologica Sinica, 2019, 93, 241-242.	1.4	1
44	Society of Economic Geologists Silver Medal for 2015. Economic Geology, 2017, 112, 214-214.	3.8	0
45	Qia'erdunbasixi Fe–Cu Deposit in Sawur, Xinjiang: A Case Study of Skarn Deposit Hosted by Volcanic Rock. Frontiers in Earth Science, 0, 10, .	1.8	0