Emanuel Peres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/320399/publications.pdf Version: 2024-02-01

EMANUEL DEDES

#	Article	IF	CITATIONS
1	Vineyard classification using OBIA on UAV-based RGB and multispectral data: A case study in different wine regions. Computers and Electronics in Agriculture, 2022, 196, 106905.	3.7	20
2	VineInspector: The Vineyard Assistant. Agriculture (Switzerland), 2022, 12, 730.	1.4	5
3	A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices. Agriculture (Switzerland), 2021, 11, 619.	1.4	25
4	Prototyping IoT-Based Virtual Environments: An Approach toward the Sustainable Remote Management of Distributed Mulsemedia Setups. Applied Sciences (Switzerland), 2021, 11, 8854.	1.3	3
5	Grapevine Variety Identification Through Grapevine Leaf Images Acquired in Natural Environment. , 2021, , .		7
6	Virtual Environments & Precision Viticulture: A Case Study. , 2021, , .		0
7	Geohazards Monitoring and Assessment Using Multi-Source Earth Observation Techniques. Remote Sensing, 2021, 13, 4269.	1.8	9
8	Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sensing, 2020, 12, 3032.	1.8	18
9	VisWebDrone: A Web Application for UAV Photogrammetry Based on Open-Source Software. ISPRS International Journal of Geo-Information, 2020, 9, 679.	1.4	6
10	Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios. International Journal of Environmental Research and Public Health, 2020, 17, 1868.	1.2	15
11	Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agronomy, 2020, 10, 855.	1.3	61
12	Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sensing, 2020, 12, 139.	1.8	30
13	Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. ISPRS International Journal of Geo-Information, 2020, 9, 225.	1.4	34
14	Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sensing, 2020, 12, 1046.	1.8	136
15	Target Influence on Ground Control Points (GCPs) Identification in Aerial Images. , 2020, , .		0
16	Estimation of Leaf Area Index in Chestnut Trees using Multispectral Data from an Unmanned Aerial Vehicle. , 2020, , .		1
17	Vineyard Classification Using Machine Learning Techniques Applied to RGB-UAV Imagery. , 2020, , .		5
18	Mysense-Webgis: A Graphical Map Layering-Based Decision Support Tool for Agriculture. , 2020, , .		2

2

EMANUEL PERES

#	Article	IF	CITATIONS
19	Precision enology in Tawny Port wine aging process: Monitoring barrel to barrel variation in oxygen, temperature and redox potential. BIO Web of Conferences, 2019, 15, 02026.	0.1	Ο
20	Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Agronomy, 2019, 9, 581.	1.3	48
21	Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers, 2019, 8, 38.	2.1	6
22	UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sensing, 2019, 11, 855.	1.8	54
23	mySense: A comprehensive data management environment to improve precision agriculture practices. Computers and Electronics in Agriculture, 2019, 162, 882-894.	3.7	68
24	MixAR. Journal of Information Technology Research, 2019, 12, 1-33.	0.3	5
25	Classification of an Agrosilvopastoral System Using RGB Imagery from an Unmanned Aerial Vehicle. Lecture Notes in Computer Science, 2019, , 248-257.	1.0	3
26	Grapevine Varieties Classification Using Machine Learning. Lecture Notes in Computer Science, 2019, , 186-199.	1.0	0
27	Digital Ampelographer: A CNN Based Preliminary Approach. Lecture Notes in Computer Science, 2019, , 258-271.	1.0	6
28	IMPLEMENTATION OF E-LEARNING AT THE UNIVERSITY OF TRÃ S -OS-MONTES E ALTO DOURO: STUDENTS' PERSPECTIVES. , 2019, , .		0
29	Distributed monitoring system for precision enology of the Tawny Port wine aging process. Computers and Electronics in Agriculture, 2018, 145, 92-104.	3.7	12
30	Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sensing, 2018, 10, 1907.	1.8	54
31	A rapid prototyping tool to produce 360° video-based immersive experiences enhanced with virtual/multimedia elements. Procedia Computer Science, 2018, 138, 441-453.	1.2	12
32	Deep Learning-Based Methodological Approach for Vineyard Early Disease Detection Using Hyperspectral Data. , 2018, , .		7
33	UAS-based photogrammetry of cultural heritage sites. , 2018, , .		4
34	UAS-based imagery and photogrammetric processing for tree height and crown diameter extraction. , 2018, , .		5
35	Machine learning classification methods in hyperspectral data processing for agricultural applications. , 2018, , .		6
36	Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs. Remote Sensing, 2018, 10, 24.	1.8	28

Emanuel Peres

#	Article	lF	CITATIONS
37	Vineyard properties extraction combining UAS-based RGB imagery with elevation data. International Journal of Remote Sensing, 2018, 39, 5377-5401.	1.3	30
38	A pilot digital image processing approach for detecting vineyard parcels in Douro region through high-resolution aerial imagery. , 2018, , .		1
39	Unmanned Aerial Systems (UAS) for environmental applications special issue preface. International Journal of Remote Sensing, 2018, 39, 4845-4851.	1.3	17
40	Reconstructing the Past. Advances in Hospitality, Tourism and the Services Industry, 2018, , 140-172.	0.2	0
41	UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing, 2017, 38, 2349-2391.	1.3	242
42	A cost-effective instrumented walkway for measuring ground reaction forces in rats to assess gait pattern. Measurement: Journal of the International Measurement Confederation, 2017, 103, 241-249.	2.5	2
43	Bringing together UAS-based land surveying and procedural modelling of buildings to set up enhanced VR environments for cultural heritage. , 2017, , .		2
44	Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Computer Science, 2017, 121, 407-414.	1.2	20
45	Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing, 2017, 9, 1110.	1.8	748
46	PROPOSAL OF A MODEL FOR THE SUCCESSFUL IMPLEMENTATION OF E-LEARNING AT THE UNIVERSITY OF TRÃ S -OS-MONTES E ALTO DOURO. EDULEARN Proceedings, 2017, , .	0.0	0
47	Ontology-based Procedural Modelling of Traversable Buildings Composed by Arbitrary Shapes. SpringerBriefs in Computer Science, 2016, , .	0.2	7
48	Ontologies and Procedural Modelling. SpringerBriefs in Computer Science, 2016, , 11-35.	0.2	0
49	A Myographic-based HCI Solution Proposal for Upper Limb Amputees. Procedia Computer Science, 2016, 100, 2-13.	1.2	4
50	Helping Older People: Is there an App for that?. Procedia Computer Science, 2016, 100, 118-127.	1.2	10
51	Generation of Virtual Buildings Composed by Arbitrary Shapes. SpringerBriefs in Computer Science, 2016, , 83-100.	0.2	0
52	Procedural Modelling Methodology Evaluation. SpringerBriefs in Computer Science, 2016, , 101-114.	0.2	0
53	Generation of Virtual Buildings Formed by Rectangles. SpringerBriefs in Computer Science, 2016, , 49-62.	0.2	0
54	Procedural Modelling Methodology Overview. SpringerBriefs in Computer Science, 2016, , 37-47.	0.2	0

EMANUEL PERES

#	Article	IF	CITATIONS
55	Cost-effective and Lightweight Mobile Units for MixAR: A Comparative Trial among Different Setups. Procedia Computer Science, 2015, 64, 870-878.	1.2	7
56	MixAR Mobile Prototype: Visualizing Virtually Reconstructed Ancient Structures In Situ. Procedia Computer Science, 2015, 64, 852-861.	1.2	19
57	Towards Modern Cost-effective and Lightweight Augmented Reality Setups. International Journal of Web Portals, 2015, 7, 33-59.	1.1	5
58	Proposal of an Information System for an Adaptive Mixed Reality System for Archaeological Sites. Procedia Technology, 2014, 16, 499-507.	1.1	9
59	Procedural Generation of Traversable Buildings Outlined by Arbitrary Convex Shapes. Procedia Technology, 2014, 16, 310-321.	1.1	8
60	Teaching Fourier Series Expansions in Undergraduate Education with the Help of the FouSE Android Application. International Journal of Interactive Mobile Technologies, 2014, 8, 26.	0.7	6
61	A framework for wireless sensor networks management for precision viticulture and agriculture based on IEEE 1451 standard. Computers and Electronics in Agriculture, 2013, 95, 19-30.	3.7	29
62	Project Management Success I-C-E Model – A Work in Progress. Procedia Technology, 2013, 9, 910-914.	1.1	5
63	Identifying different visual patterns in web users behaviour. , 2013, , .		Ο
64	Teaching of Fourier series expansions in undergraduate education. , 2013, , .		1
65	FouSE: An Android Tool to Help in the Teaching of Fourier Series Expansions in Undergraduate Education. , 2013, , .		Ο
66	A survey on HDR visualization on mobile devices. , 2012, , .		1
67	The Recognition of Web Pages' Hyperlinks by People with Intellectual Disabilities: An Evaluation Study. Journal of Applied Research in Intellectual Disabilities, 2012, 25, 542-552.	1.3	31
68	Automatic detection of bunches of grapes in natural environment from color images. Journal of Applied Logic, 2012, 10, 285-290.	1.1	87
69	Proposal of an Information System for a Semi-automatic Virtual Reconstruction of Archeological Sites. Procedia Technology, 2012, 5, 566-574.	1.1	2
70	New Interaction Paradigms to Fight the Digital Divide: A Pilot Case Study Regarding Multi-Touch Technology. Procedia Computer Science, 2012, 14, 128-137.	1.2	34
71	Web Accessibility and Digital Businesses: The Potential Economic Value of Portuguese People with Disability. Procedia Computer Science, 2012, 14, 56-64.	1.2	4
72	An autonomous intelligent gateway infrastructure for in-field processing in precision viticulture. Computers and Electronics in Agriculture, 2011, 78, 176-187.	3.7	33

EMANUEL PERES

#	Article	IF	CITATIONS
73	Internet-based collaborative E-exercisebook system for primary math teaching. , 2011, , .		2
74	Foundations for a Mobile Context-Aware Advertising System. Communications in Computer and Information Science, 2011, , 51-61.	0.4	0
75	Framework for Collaborative 3D Urban Environments. Communications in Computer and Information Science, 2011, , 19-28.	0.4	0
76	The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management. Computers and Electronics in Agriculture, 2010, 73, 154-164.	3.7	58
77	Contextualized Ubiquity: A new opportunity for rendering business information and services. Journal of Theoretical and Applied Electronic Commerce Research, 2010, 5, .	3.1	5
78	Ubiquitous System for Events Promotion. Communications of the IBIMA, 2010, , 1-10.	0.3	0
79	MULTI-PURPOSE CHESTNUT CLUSTERS DETECTION USING DEEP LEARNING: A PRELIMINARY APPROACH. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W8, 1-7.	0.2	3
80	POST-FIRE FORESTRY RECOVERY MONITORING USING HIGH-RESOLUTION MULTISPECTRAL IMAGERY FROM UNMANNED AERIAL VEHICLES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W8, 301-305.	0.2	6
81	Mapping seaweed beds using multispectral imagery retrieved by unmanned aerial vehicles. Frontiers in Marine Science, 0, 6, .	1.2	1
82	EVALUATION OF MACHINE LEARNING TECHNIQUES IN VINE LEAVES DISEASE DETECTION: A PRELIMINARY CASE STUDY ON FLAVESCENCE DORÉE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W8, 151-156.	0.2	1
83	USING VIRTUAL SCENARIOS TO PRODUCE MACHINE LEARNABLE ENVIRONMENTS FOR WILDFIRE DETECTION AND SEGMENTATION. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W8, 9-15.	0.2	2
84	Towards Modern Cost-Effective and Lightweight Augmented Reality Setups. , 0, , 396-423.		0
85	Location Based E-commerce System. , 0, , 881-892.		0