Martine M Savard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology, 2008, 353, 294-313.	5.4	549
2	Century-Long Source Apportionment of PAHs in Athabasca Oil Sands Region Lakes Using Diagnostic Ratios and Compound-Specific Carbon Isotope Signatures. Environmental Science & Technology, 2013, 47, 6155-6163.	10.0	98
3	Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus. Journal of Membrane Science, 2006, 282, 245-256.	8.2	81
4	Tree-ring stable isotopes and historical perspectives on pollution – An overview. Environmental Pollution, 2010, 158, 2007-2013.	7.5	75
5	Sources of basinal and Mississippi Valley-type mineralizing brines: mixing of evaporated seawater and halite-dissolution brine. Chemical Geology, 1997, 143, 121-125.	3.3	73
6	δ 15 N values of atmospheric N species simultaneously collected using sector-based samplers distant from sources – Isotopic inheritance and fractionation. Atmospheric Environment, 2017, 162, 11-22.	4.1	64
7	Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. Hydrogeology Journal, 2006, 14, 573-590.	2.1	61
8	Hydrothermal origin of Devonian conical mounds (kess-kess) of Hamar Lakhdad Ridge, Anti-Atlas, Morocco. Geology, 1998, 26, 1123.	4.4	60
9	Characterization and Quantification of Mining-Related "Naphthenic Acids―in Groundwater near a Major Oil Sands Tailings Pond. Environmental Science & Technology, 2013, 47, 5023-5030.	10.0	60
10	Tree-Ring Nitrogen Isotopes Reflect Anthropogenic NO _{<i>X</i>} Emissions and Climatic Effects. Environmental Science & Technology, 2009, 43, 604-609.	10.0	53
11	Isotopic Evidence for Oil Sands Petroleum Coke in the Peace–Athabasca Delta. Environmental Science & Technology, 2015, 49, 12062-12070.	10.0	47
12	Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination. Journal of Hydrology, 2010, 381, 134-141.	5.4	46
13	Determination of the origin of groundwater nitrate at an air weapons range using the dual isotope approach. Journal of Contaminant Hydrology, 2008, 98, 97-105.	3.3	45
14	Winter nitrification contributes to excess NO3â^'in groundwater of an agricultural region: A dual-isotope study. Water Resources Research, 2007, 43, .	4.2	43
15	Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth System Dynamics, 2016, 7, 183-202.	7.1	42
16	Nitrogen and triple oxygen isotopes in nearâ€road air samples using chemical conversion and thermal decomposition. Rapid Communications in Mass Spectrometry, 2012, 26, 2791-2804.	1.5	40
17	Desalination of a sedimentary rock aquifer system invaded by Pleistocene Champlain Sea water and processes controlling groundwater geochemistry. Environmental Earth Sciences, 2010, 59, 977-994.	2.7	39
18	Source Apportionment of Background PAHs in the Peace-Athabasca Delta (Alberta, Canada) Using Molecular Level Radiocarbon Analysis. Environmental Science & Technology, 2015, 49, 9056-9063.	10.0	38

MARTINE M SAVARD

#	Article	IF	CITATIONS
19	Fluid inclusion and carbon, oxygen, and strontium isotope study of the Polaris Mississippi Valley-type Zn-Pb deposit, Canadian Arctic Archipelago: implications for ore genesis. Mineralium Deposita, 2000, 35, 495-510.	4.1	36
20	Lead concentrations and isotope ratios in the exchangeable fraction: tracing soil contamination near a copper smelter. Geochemistry: Exploration, Environment, Analysis, 2006, 6, 229-236.	0.9	35
21	Effects of Smelter Sulfur Dioxide Emissions. Journal of Environmental Quality, 2004, 33, 13-26.	2.0	32
22	Dendrogeochemical distinction between geogenic and anthropogenic emissions of metals and gases near a copper smelter. Geochemistry: Exploration, Environment, Analysis, 2006, 6, 237-247.	0.9	32
23	Assessing tree-ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 423, 91-101.	2.3	32
24	Sedimentologic, diagenetic and tectonic evolution of the Saint-Flavien gas reservoir at the structural front of the Quebec Appalachians. Bullentin of Canadian Petroleum Geology, 2003, 51, 126-154.	0.3	31
25	Extraction, Separation, and Intramolecular Carbon Isotope Characterization of Athabasca Oil Sands Acids in Environmental Samples. Analytical Chemistry, 2012, 84, 10419-10425.	6.5	25
26	ls wood preâ€treatment essential for treeâ€ring nitrogen concentration and isotope analysis?. Rapid Communications in Mass Spectrometry, 2011, 25, 469-475.	1.5	24
27	Evaluating in situ biodegradation of 13C-labelled naphthenic acids in groundwater near oil sands tailings ponds. Science of the Total Environment, 2018, 643, 392-399.	8.0	24
28	Distinguishing Natural from Anthropogenic Sources of Acid Extractable Organics in Groundwater near Oil Sands Tailings Ponds. Environmental Science & Technology, 2020, 54, 2790-2799.	10.0	23
29	Are industrial SO2 emissions reducing CO2 uptake by the boreal forest?. Geology, 2002, 30, 403.	4.4	21
30	Effects of Smelter Sulfur Dioxide Emissions. Journal of Environmental Quality, 2004, 33, 13.	2.0	20
31	Fractionation change of hydrogen isotopes in trees due to atmospheric pollutants. Geochimica Et Cosmochimica Acta, 2005, 69, 3723-3731.	3.9	20
32	Modelling tree ring cellulose <i>l´</i> ¹⁸ O variations in two temperature-sensitive tree species from North and South America. Climate of the Past, 2017, 13, 1515-1526.	3.4	20
33	Basinal fluid flow models related to Zn-Pb mineralization in the southern margin of the Maritimes Basin, Eastern Canada. Economic Geology, 1998, 93, 896-910.	3.8	19
34	Multiple origin and regional significance of bedding parallel veins in a fold and thrust belt: The example of a carbonate slice along the Appalachian structural front. Tectonophysics, 2005, 407, 189-209.	2.2	19
35	Evaluating the integrity of C and O isotopes in sub-fossil wood from boreal lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 348-349, 21-31.	2.3	19
36	Tree-ring δ15N values to infer air quality changes at regional scale. Chemical Geology, 2012, 320-321, 9-16.	3.3	19

MARTINE M SAVARD

#	Article	IF	CITATIONS
37	A logâ€normal spectral analysis of inorganic grainâ€size distributions from a Canadian boreal lake core: Towards refining depositional process proxy data from high latitude lakes. Sedimentology, 2017, 64, 609-630.	3.1	19
38	Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada. Environmental Pollution, 2017, 231, 644-653.	7.5	18
39	Multi-scale nitrate transport in a sandstone aquifer system under intensive agriculture. Hydrogeology Journal, 2018, 26, 511-531.	2.1	18
40	The Δ ¹⁷ O and <i>Î</i> ¹⁸ O values of atmospheric nitrates simultaneously collected downwind of anthropogenic sources – implications for polluted air masses. Atmospheric Chemistry and Physics, 2018, 18, 10373-10389.	4.9	18
41	A geoscientific perspective on airborne smelter emissions of metals in the environment: an overview. Geochemistry: Exploration, Environment, Analysis, 2006, 6, 99-109.	0.9	17
42	Evaporative emissions from tailings ponds are not likely an important source of airborne PAHs in the Athabasca oil sands region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2439.	7.1	17
43	Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 19005.	1.6	16
44	lsotopic Analyses Fingerprint Sources of Polycyclic Aromatic Compound-Bearing Dust in Athabasca Oil Sands Region Snowpack. Environmental Science & Technology, 2021, 55, 5887-5897.	10.0	16
45	Cation study of fluid inclusion decrepitates in the Jubilee and Gays River (Canada) Zn-Pb deposits; characterization of ore-forming brines. Economic Geology, 1998, 93, 920-931.	3.8	16
46	Occurrence of High In-Stream Nitrite Levels in a Temperate Region Agricultural Watershed. Water, Air, and Soil Pollution, 2010, 206, 335-347.	2.4	15
47	Characterization of the boron, lithium, and strontium isotopic variations of oil sands process-affected water in Alberta, Canada. Applied Geochemistry, 2018, 90, 50-62.	3.0	13
48	Response strategies of boreal spruce trees to anthropogenic changes in air quality and rising pCO2. Environmental Pollution, 2020, 261, 114209.	7.5	13
49	delta 13 C-delta 18 O- 87 Sr/ 86 Sr covariations in ore-stage calcites at and around the Gays River Zn-Pb deposit (Nova Scotia, Canada); evidence for fluid mixing. Economic Geology, 1998, 93, 818-833.	3.8	11
50	A structural, petrographic, and geochemical study of the Jubilee Zn-Pb deposit, Nova Scotia, Canada, and a new metallogenic model. Economic Geology, 1998, 93, 757-778.	3.8	11
51	Nitrate Leaching from Potato Production in Eastern Canada. , 2012, , 233-250.		11
52	An overview on isotopic divergences – causes for instability of tree-ring isotopes and climate correlations. Climate of the Past, 2020, 16, 1223-1243.	3.4	10
53	lsotope geochemistry of sideritized host rocks, Walton Ba deposit, Kennetcook Sub-basin, Nova Scotia, Canada. Economic Geology, 1998, 93, 834-844.	3.8	9
54	Nitrogen isotopes of individual tree-ring series – The validity of middle- to long-term trends. Dendrochronologia, 2020, 62, 125726.	2.2	9

MARTINE M SAVARD

#	Article	IF	CITATIONS
55	Modelling carbon isotopes in spruce trees reproduces air quality changes due to oil sands operations. Ecological Indicators, 2014, 45, 1-8.	6.3	8
56	Relevance of using whole-ring stable isotopes of black spruce trees in the perspective of climate reconstruction. Dendrochronologia, 2018, 50, 64-69.	2.2	8
57	Tree-ring stable isotopes for regional discharge reconstruction in eastern Labrador and teleconnection with the Arctic Oscillation. Climate Dynamics, 2019, 53, 3625-3640.	3.8	8
58	Nitrogen isotopes in the soil-to-tree continuum — Tree rings express the soil biogeochemistry of boreal forests exposed to moderate airborne emissions. Science of the Total Environment, 2021, 780, 146581.	8.0	8
59	Underestimation of the Tambora effects in North American taiga ecosystems. Environmental Research Letters, 2018, 13, 034017.	5.2	7
60	Impacts of smelter atmospheric emissions on forest nutrient cycles: Evidence from soils and tree rings. Science of the Total Environment, 2021, 751, 141427.	8.0	7
61	Breccias in the lower part of the Mississippian Windsor Group and their relation to Zn-Pb mineralization; a summary. Economic Geology, 1998, 93, 734-745.	3.8	6
62	Stable Isotopes of Nitrate Reflect Natural Attenuation of Propellant Residues on Military Training Ranges. Environmental Science & Technology, 2013, 47, 130711065904000.	10.0	5
63	Chapter 9 Air Quality Changes in an Urban Region as Inferred from Tree-Ring Stable Isotopes. Developments in Environmental Science, 2009, 9, 229-245.	0.5	4
64	Considerations for the mitigation of nitrate contamination: stable isotopes and insights into the importance of soil processes. Water Science and Technology, 2011, 64, 1254-1260.	2.5	4
65	Membrane permeation continuousâ€flow isotope ratio mass spectrometry for onâ€line carbon isotope ratio determination. Rapid Communications in Mass Spectrometry, 2009, 23, 2213-2220.	1.5	3
66	Shorter fries? An alternative policy to support a reduction of nitrogen contamination from agricultural crop production. Environmental Science and Policy, 2015, 47, 177-185.	4.9	3
67	Perspective on smelter emissions of metals in the environment:an introduction. Geochemistry: Exploration, Environment, Analysis, 2006, 6, 98-98.	0.9	3
68	Anthropogenic N – A global issue examined at regional scale from soils, to fungi, roots and tree rings. E3S Web of Conferences, 2019, 98, 13001.	0.5	2
69	Treatment Protocol for Using Tree-ring Zn Isotopes for Environmental Studies. Procedia Earth and Planetary Science, 2015, 13, 142-146.	0.6	1
70	Impact of Increasing CO2, and Air Pollutants (NOx, SO2, O3) on the Stable Isotope Ratios in Tree Rings. Tree Physiology, 2022, , 675-710.	2.5	1
71	Geochemistry of oil inclusions in sulfide-related calcites—fingerprinting the source of the sulfate-reducing hydrocarbons of the Pb–Zn carbonate-hosted Jubilee deposit of Nova Scotia, Canada. Applied Geochemistry, 2002, 17, 69-77.	3.0	0
72	Triple Isotopic Ratios to Characterize Atmospheric N Compounds in Alberta – Work in Progress. Procedia Earth and Planetary Science, 2015, 13, 316-319.	0.6	0