Chunhua Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203216/publications.pdf

Version: 2024-02-01

66343 79698 7,006 189 42 73 citations h-index g-index papers 189 189 189 4157 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Direct Modulation Pattern Control for Dual Three-Phase PMSM Drive System. IEEE Transactions on Industrial Electronics, 2022, 69, 110-120.	7.9	36
2	Design and Control of a New Compound Double-Rotor Electric Machine for Hybrid Propulsion System. IEEE Transactions on Power Electronics, 2022, 37, 3283-3296.	7.9	11
3	Suppression of Dual-Harmonic Components for Five-Phase Series-Winding PMSM. IEEE Transactions on Transportation Electrification, 2022, 8, 121-134.	7.8	25
4	Candidate Modulation Patterns Solution for Five-Phase PMSM Drive System. IEEE Transactions on Transportation Electrification, 2022, 8, 1194-1208.	7.8	29
5	Active Harmonic Suppression of Low-Reactance Multiphase Slotless Permanent Magnet Synchronous Machines. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 1777-1787.	5.4	16
6	Novel Output Regulation Method for Three-Phase Three-Level Wireless EV Charging System. IEEE Transactions on Magnetics, 2022, 58, 1-7.	2.1	11
7	Analysis and Design Considerations of a Dual-Rotor Multiple-Winding Machine. IEEE Transactions on Industrial Electronics, 2022, 69, 8727-8738.	7.9	9
8	Nonlinear Force and Vibration Analysis of an Interior Permanent Magnet Synchronous Generator With Eccentricity Detection. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2545-2555.	5.8	10
9	Design and Optimization of a Magnetic-Geared Direct-Drive Machine With V-Shaped Permanent Magnets for Ship Propulsion. IEEE Transactions on Transportation Electrification, 2022, 8, 1619-1633.	7.8	23
10	A Novel Quasi-3D Analytical Model for Axial Flux Motors Considering Magnetic Saturation. IEEE Transactions on Energy Conversion, 2022, 37, 1358-1368.	5.2	14
11	Overview of Propulsion Systems for Unmanned Aerial Vehicles. Energies, 2022, 15, 455.	3.1	30
12	Overview of Axial-Flux Machines and Modeling Methods. IEEE Transactions on Transportation Electrification, 2022, 8, 2118-2132.	7.8	18
13	Design and Control of a Decoupled Multichannel Wireless Power Transfer System Based on Multilevel Inverters. IEEE Transactions on Power Electronics, 2022, 37, 10045-10060.	7.9	21
14	Improved Flux Weakening Control Strategy for Five-Phase PMSM Considering Harmonic Voltage Vectors. IEEE Transactions on Power Electronics, 2022, 37, 10967-10980.	7.9	45
15	Online Detection and Location of Eccentricity Fault in PMSG With External Magnetic Sensing. IEEE Transactions on Industrial Electronics, 2022, 69, 9749-9760.	7.9	7
16	Decoupled Modulation Scheme for Harmonic Current Suppression in Five-Phase PMSM. IEEE Transactions on Power Electronics, 2022, 37, 8795-8799.	7.9	5
17	Air-Gap Permeance and Reluctance Network Models for Analyzing Vibrational Exciting Force of In-Wheel PMSM. IEEE Transactions on Vehicular Technology, 2022, 71, 7122-7133.	6.3	14
18	Improved Multi-Stage Decoupling Space Vector Modulation for Asymmetrical Multi-Phase PMSM With Series Winding Connection. IEEE Transactions on Power Electronics, 2022, 37, 10951-10966.	7.9	22

#	Article	IF	Citations
19	Virtual-Vector-Based Robust Predictive Current Control for Dual Three-Phase PMSM. IEEE Transactions on Industrial Electronics, 2021, 68, 2048-2058.	7.9	128
20	Design and Analysis of a New Hybrid Wireless Power Transfer System With a Space-Saving Coupler Structure. IEEE Transactions on Power Electronics, 2021, 36, 5069-5081.	7.9	29
21	Direct Load Voltage Control for Electrolytic Capacitorless Wireless Power Transfer System Without DC/DC Converter. IEEE Transactions on Industrial Electronics, 2021, 68, 8039-8048.	7.9	9
22	Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating. Carbohydrate Polymers, 2021, 252, 117249.	10.2	33
23	Current Harmonic Suppression for Permanent-Magnet Synchronous Motor Based on Chebyshev Filter and PI Controller. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	15
24	Model Predictive Two-Target Current Control for OW-PMSM. IEEE Transactions on Power Electronics, 2021, 36, 3224-3235.	7.9	40
25	A Portable Power Quality Monitoring Approach in Microgrid With Electromagnetic Sensing and Computational Intelligence. IEEE Transactions on Magnetics, 2021, 57, 1-6.	2.1	5
26	Model Predictive Torque Control for Dual Three-Phase PMSMs with Simplified Deadbeat Solution and Discrete Space-Vector Modulation. IEEE Transactions on Energy Conversion, 2021, 36, 1491-1499.	5.2	28
27	A Fast Optimization Scheme of Coaxial Magnetic Gears Based on Exact Analytical Model Considering Magnetic Saturation. IEEE Transactions on Industry Applications, 2021, 57, 437-447.	4.9	17
28	An amino-terminated polyether-grafted graphene oxide for mechanical and thermal properties reinforcement of waterborne epoxy composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 448-460.	2.2	2
29	A Critical Review of Advanced Electric Machines and Control Strategies for Electric Vehicles. Proceedings of the IEEE, 2021, 109, 1004-1028.	21.3	124
30	Design and Analysis of a Novel Axial-Radial Flux Permanent Magnet Machine with Halbach-Array Permanent Magnets. Energies, 2021, 14, 3639.	3.1	29
31	Deadbeat Predictive Current Control for Series-Winding PMSM Drive with Half-Bridge Power Module-Based Inverter. Energies, 2021, 14, 4620.	3.1	17
32	Insight into anticorrosion/thermal stability behavior of protection system composed of waterborne polyurethane containing SiOx/TiO2@Ti3C2. Journal of Materials Science, 2021, 56, 19840-19856.	3.7	3
33	Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles. Renewable and Sustainable Energy Reviews, 2021, 147, 111188.	16.4	65
34	Direct Harmonic Current Control Scheme for Dual Three-Phase PMSM Drive System. IEEE Transactions on Power Electronics, 2021, 36, 11647-11657.	7.9	74
35	Exact Multiphysics Modeling and Experimental Validation of Spoke-Type Permanent Magnet Brushless Machines. IEEE Transactions on Power Electronics, 2021, 36, 11658-11671.	7.9	12
36	Comparative Study of Double-Stator Interior-PM Vernier Machines Based on Electromagnetic-Structural Coupling Analysis. IEEE Transactions on Industrial Electronics, 2021, 68, 10510-10520.	7.9	9

#	Article	IF	Citations
37	Exact Modeling and Multiobjective Optimization of Vernier Machines. IEEE Transactions on Industrial Electronics, 2021, 68, 11740-11751.	7.9	17
38	Online Detecting Magnet Defect Fault in PMSG With Magnetic Sensing. IEEE Transactions on Transportation Electrification, 2021, 7, 2775-2786.	7.8	7
39	Multi-Virtual-Vector Model Predictive Current Control for Dual Three-Phase PMSM. Energies, 2021, 14, 7292.	3.1	3
40	Model Predictive Control for a Six-Phase PMSM Motor With a Reduced-Dimension Cost Function. IEEE Transactions on Industrial Electronics, 2020, 67, 969-979.	7.9	59
41	An Effective Charging-Torque Elimination Method for Six-Phase Integrated On-Board EV Chargers. IEEE Transactions on Power Electronics, 2020, 35, 2776-2786.	7.9	33
42	Multi-Objective Optimization of a Double-Stator Hybrid-Excited Flux-Switching Permanent-Magnet Machine. IEEE Transactions on Energy Conversion, 2020, 35, 312-323.	5.2	33
43	Design of a Grid-Connected Multiphase Servo System Without DC-Link Capacitor. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	1
44	Design of an Effective Double-Rotor Machine With Robust Mechanical Structure. IEEE Transactions on Magnetics, 2020, 56, 1-7.	2.1	6
45	A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil–water separation abilities based on TiO2 and POSS via thiol-ene click reaction. Cellulose, 2020, 27, 2847-2857.	4.9	33
46	Analytical Modeling of a Double-Rotor Multiwinding Machine for Hybrid Aircraft Propulsion. IEEE Transactions on Transportation Electrification, 2020, 6, 1537-1550.	7.8	24
47	Wireless Power Transfer for Implanted Medical Application: A Review. Energies, 2020, 13, 2837.	3.1	69
48	Permeance and Inductance Modeling of a Double-Stator Hybrid-Excited Flux-Switching Permanent-Magnet Machine. IEEE Transactions on Transportation Electrification, 2020, 6, 1134-1145.	7.8	12
49	Incorporation of silica network and modified graphene oxide into epoxy resin for improving thermal and anticorrosion properties. Journal of Applied Polymer Science, 2020, 137, 49405.	2.6	15
50	A Study of Rotational Movement and Charging Torque of Reconfigured On-Board Charger. IEEE Transactions on Power Electronics, 2020, 35, 10720-10728.	7.9	5
51	Concurrent Wireless Power Transfer to Multiple Receivers With Additional Resonant Frequencies and Reduced Power Switches. IEEE Transactions on Industrial Electronics, 2020, 67, 9292-9301.	7.9	23
52	Separate Power Allocation and Control Method Based on Multiple Power Channels for Wireless Power Transfer. IEEE Transactions on Power Electronics, 2020, 35, 9046-9056.	7.9	34
53	A Dual-Modulator Magnetic-Geared Machine for Tidal-Power Generation. IEEE Transactions on Magnetics, 2020, 56, 1-7.	2.1	7
54	Analytical model for magneticâ€geared doubleâ€rotor machines and its <i>d–q</i> â€axis determination. IET Electric Power Applications, 2020, 14, 175-183.	1.8	6

#	Article	IF	Citations
55	DC-Biased Operation of a Double-Stator Hybrid Flux Switching Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	12
56	Modular Design of an Efficient Permanent Magnet Vernier Machine. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	19
57	Field Prediction and Validation of a Slotless Segmented-Halbach Permanent Magnet Synchronous Machine for More Electric Aircraft. IEEE Transactions on Transportation Electrification, 2020, 6, 1577-1591.	7.8	51
58	An Effective Sandwiched Wireless Power Transfer System for Charging Implantable Cardiac Pacemaker. IEEE Transactions on Industrial Electronics, 2019, 66, 4108-4117.	7.9	117
59	Robust multifunctional superhydrophobic fabric with UV induced reversible wettability, photocatalytic self-cleaning property, and oil-water separation via thiol-ene click chemistry. Applied Surface Science, 2019, 463, 34-44.	6.1	88
60	Magnetic-Field-Sensing-Based Approach for Current Reconstruction, Sag Detection, and Inclination Detection for Overhead Transmission System. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	23
61	Overview of Spintronic Sensors With Internet of Things for Smart Living. IEEE Transactions on Magnetics, 2019, 55, 1-22.	2.1	41
62	Multi-Vector-Based Model Predictive Torque Control for a Six-Phase PMSM Motor With Fixed Switching Frequency. IEEE Transactions on Energy Conversion, 2019, 34, 1369-1379.	5.2	66
63	Investigation on Magnetic Force of a Flux-Modulated Double-Rotor Permanent Magnet Synchronous Machine for Hybrid Electric Vehicle. IEEE Transactions on Transportation Electrification, 2019, 5, 1383-1394.	7.8	29
64	Pre- and Post-Fault Tolerant Operation of a Six-Phase PMSM Motor Using FCS-MPC Without Controller Reconfiguration. IEEE Transactions on Vehicular Technology, 2019, 68, 254-263.	6.3	57
65	Design and Multi-Mode Operation of Double-Stator Toroidal-Winding PM Vernier Machine for Wind-Photovoltaic Hybrid Generation System. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	15
66	Analytical Modeling and Comparison of Two Consequent-Pole Magnetic-Geared Machines for Hybrid Electric Vehicles. Energies, 2019, 12, 1888.	3.1	11
67	Quantitative Comparison of Distinct Dual-Stator Permanent Magnet Vernier Machines for Direct-Drive Applications. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	17
68	Inter-Turn Short-Circuit Fault Detection Approach for Permanent Magnet Synchronous Machines Through Stray Magnetic Field Sensing. IEEE Sensors Journal, 2019, 19, 7884-7895.	4.7	45
69	An <i>LCC</i> -Compensated Multiple-Frequency Wireless Motor System. IEEE Transactions on Industrial Informatics, 2019, 15, 6023-6034.	11.3	51
70	UV-curable waterborne epoxy acrylate coating modified by monomethacryloyloxy-terminated fluorinated oligomer. Journal of Coatings Technology Research, 2019, 16, 1305-1316.	2.5	13
71	TMR-Sensor-Array-Based Misalignment-Tolerant Wireless Charging Technique for Roadway Electric Vehicles. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	17
72	Investigation of covalently grafted polyacrylate chains onto graphene oxide for epoxy composites with reinforced mechanical performance. Journal of Applied Polymer Science, 2019, 136, 47842.	2.6	22

#	Article	IF	CITATION
73	Highly exfoliated epoxy/clay nanocomposites filled with novel cationic fluorinated polyacrylate modified montmorillonite: Morphology and mechanical properties. Polymer Composites, 2019, 40, 4266-4280.	4.6	5
74	A Consequent-Pole PM Magnetic-Geared Double-Rotor Machine With Flux-Weakening Ability for Hybrid Electric Vehicle Application. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	24
75	Design and Optimization Procedure of a Mechanical-Offset Complementary-Stator Flux-Reversal Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2019, 55, 1-7.	2.1	10
76	Model Predictive Control for a Six-Phase PMSM With High Robustness Against Weighting Factor Variation. IEEE Transactions on Industry Applications, 2019, 55, 2781-2791.	4.9	13
77	Power Allocation for Dynamic Dual-Pickup Wireless Charging System of Electric Vehicle. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	27
78	Hour-Ahead Energy Trading Management with Demand Forecasting in Microgrid Considering Power Flow Constraints. Energies, 2019, 12, 3494.	3.1	8
79	A Flux Constrained Predictive Control for a Six-Phase PMSM Motor With Lower Complexity. IEEE Transactions on Industrial Electronics, 2019, 66, 5081-5093.	7.9	48
80	An Integrated On-Board EV Charger with Safe Charging Operation for Three-Phase IPM Motor. IEEE Transactions on Industrial Electronics, 2019, 66, 7551-7560.	7.9	54
81	Elimination of Harmonic Currents Using a Reference Voltage Vector Based-Model Predictive Control for a Six-Phase PMSM Motor. IEEE Transactions on Power Electronics, 2019, 34, 6960-6972.	7.9	84
82	Facile Preparation of Robust Superhydrophobic Cotton Textile for Self-Cleaning and Oil–Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 187-194.	3.7	38
83	Design and Implementation of a Multi-Purpose TMR Sensor Matrix for Wireless Electric Vehicle Charging. IEEE Sensors Journal, 2019, 19, 1683-1692.	4.7	57
84	Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textile based on TiO2 and fluoroalkylsilane. Journal of Materials Science, 2019, 54, 2079-2092.	3.7	40
85	Fluorinated polyacrylates containing amino side chains for the surface modification of waterborne epoxy resin. Journal of Applied Polymer Science, 2019, 136, 47091.	2.6	8
86	Design and Analysis of Wireless Ballastless Fluorescent Lighting. IEEE Transactions on Industrial Electronics, 2019, 66, 4065-4074.	7.9	40
87	Design and Analysis of Wireless Switched Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 2019, 66, 245-254.	7.9	75
88	Experimental Investigation of a Johnson Noise Thermometry Using GMR Sensor for Electric Vehicle Applications. IEEE Sensors Journal, 2018, 18, 3098-3107.	4.7	13
89	A Phase-Decoupled Flux-Reversal Linear Generator for Low-Speed Oscillatory Energy Conversion Using Impedance Matching Strategy. IEEE Transactions on Industrial Electronics, 2018, 65, 7590-7599.	7.9	8
90	Velocity Measurement Technique for Permanent Magnet Synchronous Motors Through External Stray Magnetic Field Sensing. IEEE Sensors Journal, 2018, 18, 4013-4021.	4.7	44

#	Article	IF	CITATIONS
91	A Simplified Model Predictive Control for a Dual Three-Phase PMSM With Reduced Harmonic Currents. IEEE Transactions on Industrial Electronics, 2018, 65, 9079-9089.	7.9	105
92	Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles. Energies, 2018, 11, 2141.	3.1	8
93	Preparation and properties of waterborne epoxy resin modified by poly(meth)acrylates containing long fluorinated side chains. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 618-629.	2.2	4
94	Analysis and Control of Optimal Power Distribution for Multi-Objective Wireless Charging Systems. Energies, 2018, 11, 1726.	3.1	8
95	Move-and-Charge System for Automatic Guided Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	33
96	Emerging Electric Machines and Drives â€" An Overview. IEEE Transactions on Energy Conversion, 2018, 33, 2270-2280.	5. 2	110
97	Quantitative Comparison of Novel Dual-PM Linear Motors for Ropeless Elevator System. IEEE Transactions on Magnetics, 2018, 54, 1-6.	2.1	22
98	Marker-Free Coil-Misalignment Detection Approach Using TMR Sensor Array for Dynamic Wireless Charging of Electric Vehicles. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	16
99	Design of a Double-Stator Magnetless Vernier Machine for Direct-Drive Robotics. IEEE Transactions on Magnetics, 2018, 54, 1-5.	2.1	20
100	An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions. Energies, 2018, 11, 141.	3.1	9
101	Development of a Singly Fed Mechanical-Offset Machine for Electric Vehicles. IEEE Transactions on Energy Conversion, 2018, 33, 516-525.	5.2	4
102	Time-Division Multiplexing Wireless Power Transfer for Separately Excited DC Motor Drives. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	66
103	Doubly Salient Dual-PM Linear Machines for Regenerative Shock Absorbers. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	11
104	A New Electric Magnetic-Geared Machine for Electric Unmanned Aerial Vehicles. IEEE Transactions on Magnetics, 2017, 53, 1-6.	2.1	27
105	Predictive current control of a new threeâ€phase voltage source inverter with phase shift compensation. IET Electric Power Applications, 2017, 11, 740-748.	1.8	20
106	Overview of coil designs for wireless charging of electric vehicle., 2017,,.		63
107	Design considerations and performance improvement of a dual-stator PM vernier motor with axial-flux loop. , 2017, , .		5
108	Overview of advanced control strategies for electric machines. Chinese Journal of Electrical Engineering, 2017, 3, 53-61.	3.4	37

#	Article	IF	Citations
109	Design of a double-stator hybrid flux switching permanent magnet machine for direct-drive robotics., 2017,,.		8
110	Model predictive torque control of an open-end winding PMSM with reduced computation time. , 2017, , .		10
111	Design of an effective wireless air charging system for electric unmanned aerial vehicles. , 2017, , .		29
112	Velocity measurement method for PMSMs through external stray magnetic field sensing., 2017,,.		3
113	Design and Evaluation of an Efficient Three-Phase Four-Leg Voltage Source Inverter with Reduced IGBTs. Energies, 2017, 10, 530.	3.1	5
114	An Overview of Resonant Circuits for Wireless Power Transfer. Energies, 2017, 10, 894.	3.1	127
115	Wireless DC Motor Drives with Selectability and Controllability. Energies, 2017, 10, 49.	3.1	30
116	Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging. Energies, 2016, 9, 906.	3.1	63
117	Design and Analysis of an Electronic-Geared Magnetless Machine for Electric Vehicles. IEEE Transactions on Industrial Electronics, 2016, 63, 6705-6714.	7.9	35
118	A new johnson-noise-based thermometry using giant magnetoresistive sensor. , 2016, , .		2
119	Design of a new nonâ€rareâ€earth magnetic variable gear for hybrid vehicular propulsion system. IET Electrical Systems in Transportation, 2016, 6, 153-162.	2.4	13
120	Pole-Changing Flux-Weakening DC-Excited Dual-Memory Machines for Electric Vehicles. IEEE Transactions on Energy Conversion, 2016, 31, 27-36.	5.2	22
121	A new fault-tolerant flux-reversal doubly-salient magnetless motor drive with four-phase topology. , 2015, , .		2
122	Electromagnetic design of a new hybrid-excited flux-switching machine for fault-tolerant operations. , 2015, , .		0
123	A New Hybrid-Structure Machine With Multimode Fault-Tolerant Operation for Mars Rover. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	12
124	Design and analysis of a dualâ€mode fluxâ€switching doubly salient DCâ€field magnetless machine for wind power harvesting. IET Renewable Power Generation, 2015, 9, 908-915.	3.1	13
125	Quantitative comparison of permanent magnet linear machines for ropeless elevator. , 2015, , .		2
126	Design and Analysis of a New Six-Phase Fault-Tolerant Hybrid-Excitation Motor for Electric Vehicles. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	15

#	Article	IF	CITATIONS
127	A New Magnetless Flux-Reversal HTS Machine for Direct-Drive Application. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.7	31
128	Design and Analysis of a Cost-Effective Magnetless Multiphase Flux-Reversal DC-Field Machine for Wind Power Generation. IEEE Transactions on Energy Conversion, 2015, 30, 1565-1573.	5.2	45
129	A positioning-tolerant wireless charging system for roadway-powered electric vehicles. Journal of Applied Physics, 2015, 117, .	2.5	16
130	Modular inductive power transmission system for high misalignment electric vehicle application. Journal of Applied Physics, 2015, 117, .	2.5	29
131	Multiple-receptor wireless power transfer for magnetic sensors charging on Mars via magnetic resonant coupling. Journal of Applied Physics, 2015, 117, .	2.5	21
132	Wireless power transfer and fault diagnosis of high-voltage power line via robotic bird. Journal of Applied Physics, 2015, 117, .	2.5	18
133	Fault Signature of a Flux-Switching DC-Field Generator. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	5
134	Energy-security-based contactless battery charging system for roadway-powered electric vehicles. , 2015, , .		6
135	Energy Encryption for Wireless Power Transfer. IEEE Transactions on Power Electronics, 2015, 30, 5237-5246.	7.9	111
136	Electromagnetic Design of a New Electrically Controlled Magnetic Variable-Speed Gearing Machine. Energies, 2014, 7, 1539-1554.	3.1	23
137	A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles. Energies, 2014, 7, 1483-1499.	3.1	31
138	Quantitative comparison of dynamic flux distribution of magnetic couplers for roadway electric vehicle wireless charging system. Journal of Applied Physics, 2014, 115, .	2.5	18
139	Magnetic Vibration Analysis of a New DC-Excited Multitoothed Switched Reluctance Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	19
140	An efficient offshore wind-wave hybrid generation system using direct-drive multitoothed rotating and linear machines. , $2014, \dots$		2
141	Mechanical Offset for Torque Ripple Reduction for Magnetless Double-Stator Doubly Salient Machine. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	20
142	A High-Torque Magnetless Axial-Flux Doubly Salient Machine for In-Wheel Direct Drive Applications. IEEE Transactions on Magnetics, 2014, 50, 1-5.	2.1	26
143	Quantitative Analysis of Mutual Inductance for Optimal Wireless Power Transfer via Magnetic Resonant Coupling. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	42
144	New Approach for Pole-Changing With Dual-Memory Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	8

#	Article	IF	CITATIONS
145	Design and Analysis of a Flux-Controllable Linear Variable Reluctance Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	10
146	Investigation of energy harvesting for magnetic sensor arrays on Mars by wireless power transmission. Journal of Applied Physics, 2014, 115, .	2.5	18
147	Design and Analysis of a New Magnetic-Geared Memory Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-5.	1.7	8
148	Design and Analysis of a New Magnetic Gear With Multiple Gear Ratios. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	15
149	Design and Analysis of a New Multitoothed Magnetless Doubly Salient Machine. IEEE Transactions on Applied Superconductivity, 2014, 24, 1-4.	1.7	16
150	An efficient wireless power transfer system with security considerations for electric vehicle applications. Journal of Applied Physics, 2014, 115, .	2.5	47
151	Integrated Energy Management of Plug-in Electric Vehicles in Power Grid With Renewables. IEEE Transactions on Vehicular Technology, 2014, 63, 3019-3027.	6.3	156
152	Cost-Effectiveness Comparison of Coaxial Magnetic Gears With Different Magnet Materials. IEEE Transactions on Magnetics, 2014, 50, 821-824.	2.1	42
153	Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proceedings of the IEEE, 2013, 101, 2409-2427.	21.3	612
154	Analysis of Tooth-Tip Flux Leakage in Surface-Mounted Permanent Magnet Linear Vernier Machines. IEEE Transactions on Magnetics, 2013, 49, 3949-3952.	2.1	53
155	Comparison of outer-rotor permanent magnet machines for in-wheel drives. , 2013, , .		10
156	Quantitative Comparison and Analysis of Magnetless Machines With Reluctance Topologies. IEEE Transactions on Magnetics, 2013, 49, 3969-3972.	2.1	32
157	Design and analysis of a DC field multitooth switched reluctance machine by using soft-magnetic-composite material., 2013,,.		1
158	Overview of wireless power transfer for electric vehicle charging. , 2013, , .		80
159	Stabilization of chaos in electric vehicle steering systems using induction motor. , 2013, , .		2
160	ELECTROMAGNETIC DESIGN AND ANALYSIS OF MAGNETLESS DOUBLE-ROTOR DUAL-MODE MACHINES. Progress in Electromagnetics Research, 2013, 142, 333-351.	4.4	11
161	Comparison of chaotic PWM algorithms for electric vehicle motor drives. , 2012, , .		5
162	Design and Analysis of Magnet Proportioning for Dual-Memory Machines. IEEE Transactions on Applied Superconductivity, 2012, 22, 4905404-4905404.	1.7	13

#	Article	IF	Citations
163	Design Principles of Permanent Magnet Dual-Memory Machines. IEEE Transactions on Magnetics, 2012, 48, 3234-3237.	2.1	18
164	A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application. , $2012, , .$		3
165	Novel Design of Double-Stator Single-Rotor Magnetic-Geared Machines. IEEE Transactions on Magnetics, 2012, 48, 4180-4183.	2.1	72
166	Transient Stability Analysis of SMES for Smart Grid With Vehicle-to-Grid Operation. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701105-5701105.	1.7	32
167	Quantitative Comparison of Double-Stator Permanent Magnet Vernier Machines With and Without HTS Bulks. IEEE Transactions on Applied Superconductivity, 2012, 22, 5202405-5202405.	1.7	25
168	SMES Control for Power Grid Integrating Renewable Generation and Electric Vehicles. IEEE Transactions on Applied Superconductivity, 2012, 22, 5701804-5701804.	1.7	20
169	ELECTROMAGNETIC DESIGN AND ANALYSIS OF DOUBLE-ROTOR FLUX-MODULATED PERMANENT-MAGNET MACHINES. Progress in Electromagnetics Research, 2012, 131, 81-97.	4.4	24
170	Design and Analysis of a HTS Brushless Doubly-Fed Doubly-Salient Machine. IEEE Transactions on Applied Superconductivity, 2011, 21, 1119-1122.	1.7	41
171	Design of a new outer-rotor flux-controllable vernier PM in-wheel motor drive for electric vehicle. , 2011, , .		15
172	A Novel Flux-Controllable Vernier Permanent-Magnet Machine. IEEE Transactions on Magnetics, 2011, 47, 4238-4241.	2.1	76
173	Coordinated control on a vehicle-to-grid system. , 2011, , .		8
174	Design of dual-magnet memory machines., 2011,,.		0
175	Comparison of Fault-Tolerant Operations for Permanent-Magnet Hybrid Brushless Motor Drive. IEEE Transactions on Magnetics, 2010, 46, 1378-1381.	2.1	61
176	A New Efficient Permanent-Magnet Vernier Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2010, 46, 1475-1478.	2.1	220
177	A new DC micro-grid system using renewable energy and electric vehicles for smart energy delivery. , 2010, , .		35
178	An Efficient Wind–Photovoltaic Hybrid Generation System Using Doubly Excited Permanent-Magnet Brushless Machine. IEEE Transactions on Industrial Electronics, 2010, 57, 831-839.	7.9	160
179	Loss Analysis of Permanent Magnet Hybrid Brushless Machines With and Without HTS Field Windings. IEEE Transactions on Applied Superconductivity, 2010, 20, 1077-1080.	1.7	22
180	A Permanent-Magnet Hybrid Brushless Integrated Starter–Generator for Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2010, 57, 4055-4064.	7.9	159

#	Article	IF	CITATIONS
181	Efficiency Optimization of a Permanent-Magnet Hybrid Brushless Machine Using DC Field Current Control. IEEE Transactions on Magnetics, 2009, 45, 4652-4655.	2.1	32
182	Design of a New Outer-Rotor Permanent Magnet Hybrid Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2008, 44, 1494-1497.	2.1	91
183	Comparison of Stator-Permanent-Magnet Brushless Machines. IEEE Transactions on Magnetics, 2008, 44, 4405-4408.	2.1	77
184	A permanent-magnet hybrid in-wheel motor drive for electric vehicles. , 2008, , .		15
185	Design and Control of a Doubly-Excited Permanent-Magnet Brushless Integrated-Starter-Generator for Hybrid Electric Vehicles. Conference Record - IAS Annual Meeting (IEEE Industry Applications) T_j ETQq $1\ 1\ 0.78$	4 3014 rgBT	/Øverlock 1
186	A Transient Cosimulation Approach to Performance Analysis of Hybrid Excited Doubly Salient Machine Considering Indirect Field-Circuit Coupling. IEEE Transactions on Magnetics, 2007, 43, 2558-2560.	2.1	94
187	Improvement of Electromagnetic Compatibility of Motor Drives Using Chaotic PWM. IEEE Transactions on Magnetics, 2007, 43, 2612-2614.	2.1	51
188	Design and Control of a New Double-Stator Cup-Rotor Permanent-Magnet Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2007, 43, 2501-2503.	2.1	99
189	Design of a Magnetic-Geared Outer-Rotor Permanent-Magnet Brushless Motor for Electric Vehicles. IEEE Transactions on Magnetics, 2007, 43, 2504-2506.	2.1	325