Rui Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visibleâ€Light Irradiation. ChemSusChem, 2016, 9, 1490-1497.	3.6	253
2	High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy and Environmental Science, 2016, 9, 1458-1467.	15.6	202
3	Removal of Hazardous Pollutants from Wastewaters: Applications of TiO ₂ -SiO ₂ Mixed Oxide Materials. Journal of Nanomaterials, 2014, 2014, 1-42.	1.5	176
4	Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach. International Journal of Hydrogen Energy, 2012, 37, 8257-8267.	3.8	101
5	Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catalysis Science and Technology, 2012, 2, 1737.	2.1	94
6	Room Temperature Synthesis of Ti–MCM-48 and Ti–MCM-41 Mesoporous Materials and Their Performance on Photocatalytic Splitting of Water. Journal of Physical Chemistry C, 2012, 116, 1605-1613.	1.5	90
7	An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Applied Catalysis B: Environmental, 2015, 174-175, 49-59.	10.8	82
8	Robust Ag nanoplate ink for flexible electronics packaging. Nanoscale, 2015, 7, 7368-7377.	2.8	71
9	Ultra-stable CdS incorporated Ti-MCM-48 mesoporous materials for efficient photocatalytic decomposition of water under visible light illumination. Chemical Communications, 2013, 49, 3221.	2.2	64
10	Enhanced visible light photocatalytic water reduction from a g-C3N4/SrTa2O6 heterojunction. Applied Catalysis B: Environmental, 2017, 217, 448-458.	10.8	58
11	Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catalysis Communications, 2013, 31, 66-70.	1.6	54
12	Visible-light-driven Bi ₂ 0 ₃ /WO ₃ composites with enhanced photocatalytic activity. RSC Advances, 2015, 5, 91094-91102.	1.7	54
13	Visible light driven photocatalytic evolution of hydrogen from water over CdS encapsulated MCM-48 materials. RSC Advances, 2012, 2, 5754.	1.7	53
14	Competitive role of structural properties of titania–silica mixed oxides and a mechanistic study of the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 2014, 148-149, 394-405.	10.8	41
15	Synthesis-Dependent Oxidation State of Platinum on TiO ₂ and Their Influences on the Solar Simulated Photocatalytic Hydrogen Production from Water. Journal of Physical Chemistry C, 2013, 117, 16850-16862.	1.5	40
16	Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. Journal of Renewable and Sustainable Energy, 2013, 5, .	0.8	39
17	Preparation of TiO2–SiO2 aperiodic mesoporous materials with controllable formation of tetrahedrally coordinated Ti4+ ions and their performance for photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2014, 39, 127-136.	3.8	29
18	TiO2–SiO2 mixed oxides: Organic ligand templated controlled deposition of titania and their photocatalytic activities for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 17009-17018.	3.8	23

Rui Peng

#	Article	IF	CITATIONS
19	An investigation into the effect of porosities on the adsorption ofÂrhodamine B using titania–silica mixed oxide xerogels. Journal of Environmental Management, 2013, 128, 530-539.	3.8	23
20	Pd–Ti-MCM-48 cubic mesoporous materials for solar simulated hydrogen evolution. International Journal of Hydrogen Energy, 2015, 40, 905-918.	3.8	21
21	Investigation of the role of platinum oxide for the degradation of phenol under simulated solar irradiation. Applied Catalysis B: Environmental, 2013, 136-137, 248-259.	10.8	19
22	Solar hydrogen generation over CdS incorporated in Ti-MCM-48 mesoporous materials under visible light illumination. International Journal of Hydrogen Energy, 2016, 41, 4106-4119.	3.8	19
23	Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO ₂ dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination. Physical Chemistry Chemical Physics, 2014, 16, 2048-2061.	1.3	17
24	Facile Synthesis of 1,3,5â€Triarylbenzenes and 4â€Arylâ€ <i>NH</i> â€1,2,3â€Triazoles Using Mesoporous Pdâ€M as Reusable Catalyst. European Journal of Organic Chemistry, 2019, 2019, 104-111.	CMâ€41 1.2	16
25	Robust and effective Ru-bipyridyl dye sensitized Ti-MCM-48 cubic mesoporous materials for photocatalytic hydrogen evolution under visible light illumination. Catalysis Communications, 2015, 65, 14-19.	1.6	13
26	Solar simulated hydrogen evolution using cobalt oxide nanoclusters deposited on titanium dioxide mesoporous materials prepared by evaporation induced self-assembly process. International Journal of Hydrogen Energy, 2015, 40, 10795-10806.	3.8	9
27	Efficient photocatalytic hydrogen evolution system by assembling earth abundant NixOy nanoclusters in cubic MCM-48 mesoporous materials. RSC Advances, 2016, 6, 59169-59180.	1.7	8
28	Expeditious one-pot three component synthesis of N-aryl dithiocarbamate derivatives using mesoporous Cu-materials. Tetrahedron Letters, 2015, 56, 1609-1613.	0.7	5
29	REACTIVITY AND MORPHOLOGY OF Ni, Mo, AND Ni–Mo OXIDE CLUSTERS SUPPORTED ON MCM-48 TOWARD THIOPHENE HYDRODESULPHURIZATION. Surface Review and Letters, 2014, 21, 1450060.	0.5	1