List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203014/publications.pdf Version: 2024-02-01

		279487	329751
142	2,117	23	37
papers	citations	h-index	g-index
143	143	143	2686
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Review on Nano-Based Drug Delivery System for Cancer Chemoimmunotherapy. Nano-Micro Letters, 2020, 12, 142.	14.4	156
2	Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nature Communications, 2019, 10, 1378.	5.8	128
3	Deep-blue electroluminescence from nondoped and doped organic light-emitting diodes (OLEDs) based on a new monoaza[6]helicene. RSC Advances, 2015, 5, 75-84.	1.7	81
4	Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process. Environmental Pollution, 2017, 220, 13-19.	3.7	73
5	Pb(ii) metal–organic nanotubes based on cyclodextrins: biphasic synthesis, structures and properties. Chemical Science, 2012, 3, 2282.	3.7	70
6	Promoting Early Diagnosis and Precise Therapy of Hepatocellular Carcinoma by Glypican-3-Targeted Synergistic Chemo-Photothermal Theranostics. ACS Applied Materials & Interfaces, 2019, 11, 23591-23604.	4.0	52
7	Water Promoting Electron Hole Transport between Tyrosine and Cysteine in Proteins via a Special Mechanism: Double Proton Coupled Electron Transfer. Journal of the American Chemical Society, 2014, 136, 4515-4524.	6.6	51
8	Mechanisms of Silicon Alkoxide Hydrolysis–Oligomerization Reactions: A DFT Investigation. ChemPhysChem, 2012, 13, 2392-2404.	1.0	47
9	Mechanistic Insights into the Decoupled Desaturation and Epoxidation Catalyzed by Dioxygenase AsqJ Involved in the Biosynthesis of Quinolone Alkaloids. ACS Catalysis, 2017, 7, 5534-5543.	5.5	47
10	Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of hepatocellular carcinoma. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1374-1383.	1.9	45
11	Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using "graft to―strategy for drug controlled release. Acta Biomaterialia, 2017, 63, 150-162.	4.1	41
12	Cascade Cytosol Delivery of Dual-Sensitive Micelle-Tailored Vaccine for Enhancing Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2018, 10, 37797-37811.	4.0	35
13	Mechanism of Sulfoxidation and C–S Bond Formation Involved in the Biosynthesis of Ergothioneine Catalyzed by Ergothioneine Synthase (EgtB). ACS Catalysis, 2018, 8, 5875-5889.	5.5	35
14	Theoretical Insights into the Mechanism and Stereoselectivity of Olefin Cyclopropanation Catalyzed by Two Engineered Cytochrome P450 Enzymes. Inorganic Chemistry, 2018, 57, 11738-11745.	1.9	33
15	Uncoupled Epimerization and Desaturation by Carbapenem Synthase: Mechanistic Insights from QM/MM Studies. ACS Catalysis, 2015, 5, 5556-5566.	5.5	31
16	Insights into the unprecedented epoxidation mechanism of fumitremorgin B endoperoxidase (FtmOx1) from Aspergillus fumigatus by QM/MM calculations. Physical Chemistry Chemical Physics, 2017, 19, 7668-7677.	1.3	29
17	Mechanistic Investigation of Isonitrile Formation Catalyzed by the Nonheme Iron/α-KG-Dependent Decarboxylase (ScoE). ACS Catalysis, 2020, 10, 2942-2957.	5.5	29
18	Small Morph Nanoparticles for Deep Tumor Penetration via Caveolae-Mediated Transcytosis. ACS Applied Materials & Interfaces, 2020, 12, 38499-38511.	4.0	28

#	Article	IF	CITATIONS
19	Reshaping Antitumor Immunity with Chemoâ€Photothermal Integrated Nanoplatform to Augment Checkpoint Blockadeâ€Based Cancer Therapy. Advanced Functional Materials, 2021, 31, 2100437.	7.8	28
20	Potential application of a porous graphitic carbon nitride as an organic metal-free photocatalyst for water splitting. Diamond and Related Materials, 2018, 87, 50-55.	1.8	27
21	Nanoparticle-Loaded Polarized-Macrophages for Enhanced Tumor Targeting and Cell-Chemotherapy. Nano-Micro Letters, 2021, 13, 6.	14.4	27
22	THEORETICAL STUDIES ON THE MECHANISM OF CYCLIC NUCLEOTIDE MONOPHOSPHATE HYDROLYSIS WITHIN PHOSPHODIESTERASES. Journal of Theoretical and Computational Chemistry, 2012, 11, 573-586.	1.8	26
23	The structures and properties of halogen bonds involving polyvalent halogen in complexes of FXOn (X = Cl, Br; n = 0–3)–CH3CN. New Journal of Chemistry, 2014, 38, 1256.	1.4	26
24	Synergistic strengthening mechanism of hydraulic selection pressure and poly aluminum chloride (PAC) regulation on the aerobic sludge granulation. Science of the Total Environment, 2019, 650, 941-950.	3.9	25
25	Impact of Al-based coagulants on the formation of aerobic granules: Comparison between poly aluminum chloride (PAC) and aluminum sulfate (AS). Science of the Total Environment, 2019, 685, 74-84.	3.9	24
26	Theoretical Investigations towards the Staudinger Reaction Catalyzed by Nâ€Heterocyclic Carbene: Mechanism and Stereoselectivity. European Journal of Organic Chemistry, 2010, 2010, 6249-6255.	1.2	23
27	Ring Contraction Catalyzed by the Metal-Dependent Radical SAM Enzyme: 7-Carboxy-7-deazaguanine Synthase from <i>B. multivorans</i> . Theoretical Insights into the Reaction Mechanism and the Influence of Metal Ions. ACS Catalysis, 2015, 5, 3953-3965.	5.5	23
28	Reductive Homocoupling of Organohalides Using Nickel(II) Chloride and Samarium Metal. Chemistry - an Asian Journal, 2017, 12, 673-678.	1.7	22
29	Mechanistic insights into the catalytic reaction of ferulic acid decarboxylase from Aspergillus niger: a QM/MM study. Physical Chemistry Chemical Physics, 2017, 19, 7733-7742.	1.3	22
30	Theoretical Study of Iron Porphyrin Nitrene: Formation Mechanism, Electronic Nature, and Intermolecular C–H Amination. Inorganic Chemistry, 2020, 59, 1622-1632.	1.9	22
31	The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Organic and Biomolecular Chemistry, 2012, 10, 1014-1024.	1.5	19
32	The charge regulation of electronic structure and optical properties of graphitic carbon nitride under strain. RSC Advances, 2019, 9, 7464-7468.	1.7	19
33	Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 22213-22224.	4.0	18
34	Manipulation of TAMs functions to facilitate the immune therapy effects of immune checkpoint antibodies. Journal of Controlled Release, 2021, 336, 621-634.	4.8	18
35	Mechanical insights into the oxidative cleavage of resveratrol catalyzed by dioxygenase NOV1 from <i>Novosphingobium aromaticivorans</i> : confirmation of dioxygenase mechanism by QM/MM calculations. Catalysis Science and Technology, 2019, 9, 444-455.	2.1	17
36	An Integrated Nanoaircraft Carrier Modulating Antitumor Immunity to Enhance Immune Checkpoint Blockade Therapy. Advanced Functional Materials, 2021, 31, 2106123.	7.8	17

#	Article	IF	CITATIONS
37	A simple way of shape-controlled synthesis of ZnSe nanocrystals :  nanodots, nanoflowers, and nanotubes. CrystEngComm, 2009, 11, 1789.	1.3	15
38	Theoretical Study of the Catalytic Mechanism of E1 Subunit of Pyruvate Dehydrogenase Multienzyme Complex from <i>Bacillus stearothermophilus</i> . Biochemistry, 2013, 52, 8079-8093.	1.2	15
39	Insights into the dioxygen activation and catalytic mechanism of the nickel-containing quercetinase. Catalysis Science and Technology, 2018, 8, 2340-2351.	2.1	15
40	A QM/MM study on the catalytic mechanism of pyruvate decarboxylase. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	14
41	Strengthen effects of dominant strains on aerobic digestion and stabilization of the residual sludge. Bioresource Technology, 2017, 235, 202-210.	4.8	14
42	Tryptophan lyase (NosL): mechanistic insights into amine dehydrogenation and carboxyl fragment migration by QM/MM calculations. Catalysis Science and Technology, 2017, 7, 2846-2856.	2.1	13
43	Hormesis of mercuric chloride-human serum albumin adduct on N9 microglial cells via the ERK/MAPKs and JAK/STAT3 signaling pathways. Toxicology, 2018, 408, 62-69.	2.0	13
44	Imidazoquinoline-Conjugated Degradable Coacervate Conjugate for Local Cancer Immunotherapy. ACS Biomaterials Science and Engineering, 2020, 6, 4993-5000.	2.6	13
45	A comparison between exogenous carriers enhanced aerobic granulation under low organic loading in the aspect of sludge characteristics, extracellular polymeric substances and microbial communities. Bioresource Technology, 2022, 346, 126567.	4.8	13
46	Catalytic mechanism of acetolactate decarboxylase from Brevibacillus brevis towards both enantiomers of α-acetolactate. RSC Advances, 2016, 6, 80621-80629.	1.7	12
47	Oxidative Rearrangement Mechanism of Pentalenolactone F Catalyzed by Cytochrome P450 CYP161C2 (PntM). Inorganic Chemistry, 2018, 57, 8933-8941.	1.9	12
48	Insights into the Mechanism and Enantioselectivity in the Biosynthesis of Ergot Alkaloid Cycloclavine Catalyzed by Aj_EasH from <i>Aspergillus japonicus</i> . Inorganic Chemistry, 2019, 58, 13771-13781.	1.9	12
49	Mechanical Insights into the Enzymatic Cleavage of Double C–C Bond in Poly(<i>cis</i> -1,4-isoprene) by the Latex Clearing Protein. Inorganic Chemistry, 2020, 59, 9627-9637.	1.9	12
50	Theoretical investigation on the regioselectivity of Ni(COD)2-catalyzed [2Â+Â2Â+Â2] cycloaddition of unsymmetric diynes and CO2. Journal of Organometallic Chemistry, 2014, 758, 45-54.	0.8	11
51	A QM/MM study of the catalytic mechanism of aspartate ammonia lyase. Journal of Molecular Graphics and Modelling, 2014, 51, 113-119.	1.3	11
52	A QM/MM study of the catalytic mechanism of nicotinamidase. Organic and Biomolecular Chemistry, 2014, 12, 1265.	1.5	11
53	Mechanism of the Glutathione Persulfide Oxidation Process Catalyzed by Ethylmalonic Encephalopathy Protein 1. ACS Catalysis, 2016, 6, 7010-7020.	5.5	11
54	Reductive Bis-addition of Aromatic Aldehydes to α,β-Unsaturated Esters via the Use of Sm/Cu(I) in Air: A Route to the Construction of Furofuran Lignans. Journal of Organic Chemistry, 2017, 82, 5932-5939.	1.7	11

#	Article	IF	CITATIONS
55	Transformation of <i>gem</i> â€Dicyanoethenes by Samarium: Direct Formation of Indenes or Direct Decyanation with in Situ Disilylation. European Journal of Organic Chemistry, 2008, 2008, 5470-5476.	1.2	10
56	Intermolecular Couplization and Cyclization of Chalcones Promoted by Samarium in DMF. Synthetic Communications, 2009, 39, 799-807.	1.1	10
57	Role of Fâ^' in the hydrolysis–condensation mechanisms of silicon alkoxide Si(OCH3)4: a DFT investigation. New Journal of Chemistry, 2013, 37, 1371.	1.4	10
58	A theoretical study of the catalytic mechanism of oxalyl-CoA decarboxylase, an enzyme for treating urolithiasis. RSC Advances, 2014, 4, 35777.	1.7	10
59	Catalytic mechanisms of Au11 and Au11-nPtn (n=1–2) clusters: a DFT investigation on the oxidation of CO by O2. Journal of Molecular Modeling, 2015, 21, 230.	0.8	10
60	Insights into the decarboxylative hydroxylation of salicylate catalyzed by the Flavin-dependent monooxygenase salicylate hydroxylase. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	10
61	Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3. Biochemical Engineering Journal, 2019, 151, 107329.	1.8	10
62	Mechanistic Insights into the P450 TleB-Catalyzed Unusual Intramolecular C–N Bond Formation Involved in the Biosynthesis of Indolactam V. Journal of Chemical Information and Modeling, 2021, 61, 3638-3648.	2.5	10
63	Multipoint Costriking Nanodevice Eliminates Primary Tumor Cells and Associated irculating Tumor Cells for Enhancing Metastasis Inhibition and Therapeutic Effect on HCC. Advanced Science, 2022, 9, e2101472.	5.6	10
64	Depleting Tumor Infiltrating B Cells to Boost Antitumor Immunity with Tumor Immune-Microenvironment Reshaped Hybrid Nanocage. ACS Nano, 2022, 16, 4263-4277.	7.3	10
65	Theoretical study on the deglycosylation mechanism of rice BGlu1 βâ€glucosidase. International Journal of Quantum Chemistry, 2013, 113, 1071-1075.	1.0	9
66	QM/MM study of the conversion mechanism of lysine to methylornithine catalyzed by methylornithine synthase (PylB). Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	9
67	Insight into the mechanism of aminomutase reaction: A case study of phenylalanine aminomutase by computational approach. Journal of Molecular Graphics and Modelling, 2013, 46, 65-73.	1.3	9
68	QM/MM Study of the Reaction Mechanism of the Carboxyl Transferase Domain of Pyruvate Carboxylase from <i>Staphylococcus aureus</i> . Biochemistry, 2014, 53, 4455-4466.	1.2	9
69	Insights into the catalytic mechanism of N-acetylglucosaminidase glycoside hydrolase from Bacillus subtilis: a QM/MM study. Organic and Biomolecular Chemistry, 2016, 14, 3432-3442.	1.5	9
70	Comparative studies of the catalytic mechanisms of two chorismatases: CHâ€fkbo and CHâ€Hyg5. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1146-1158.	1.5	9
71	Protonation state and fine structure of the active site determine the reactivity of dehydratase: hydration and isomerization of $\hat{1}^2$ -myrcene catalyzed by linalool dehydratase/isomerase from Castellaniella defragrans. Physical Chemistry Chemical Physics, 2018, 20, 17342-17352.	1.3	9
72	Mechanism of fatty acid decarboxylation catalyzed by a non-heme iron oxidase (UndA): a QM/MM study. Organic and Biomolecular Chemistry, 2019, 17, 9808-9818.	1.5	9

#	Article	IF	CITATIONS
73	<p>Engineering Thermo-pH Dual Responsive Hydrogel for Enhanced Tumor Accumulation, Penetration, and Chemo-Protein Combination Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 4739-4752.	3.3	9
74	Title is missing!. Theoretical and Experimental Chemistry, 2000, 36, 303-311.	0.2	8
75	X-ray crystallography and QM/MM investigation on the oligosaccharide synthesis mechanism of rice BGlu1 glycosynthases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 536-545.	1.1	8
76	Insights into the catalytic mechanism of dTDP-glucose 4,6-dehydratase from quantum mechanics/molecular mechanics simulations. RSC Advances, 2014, 4, 35449.	1.7	8
77	Theoretical investigation on the dissociation of (R)-benzoin catalyzed by benzaldehyde lyase. International Journal of Quantum Chemistry, 2014, 114, 375-382.	1.0	8
78	Spatial distribution, source identification, and potential risk assessment of toxic contaminants in surface waters from Yulin, China. Environmental Monitoring and Assessment, 2019, 191, 293.	1.3	8
79	Conversion mechanism of enoyl thioesters into acyl thioesters catalyzed by 2-enoyl-thioester reductases from <i>Candida Tropicalis</i> . Physical Chemistry Chemical Physics, 2019, 21, 10105-10113.	1.3	8
80	Mechanistic Insights into the Oxidative Ring Expansion from Penicillin N to Deacetoxycephalosporin C Catalyzed by a Nonheme Iron(II) and α-KG-Dependent Oxygenase. Inorganic Chemistry, 2020, 59, 12218-12231.	1.9	8
81	The Retaining Mechanism of Xylose Transfer Catalyzed by Xyloside α-1,3-Xylosyltransferase (XXYLT1): a Quantum Mechanics/Molecular Mechanics Study. Journal of Chemical Information and Modeling, 2020, 60, 1585-1594.	2.5	8
82	High-Specific Isolation and Instant Observation of Circulating Tumour Cell from HCC Patients via Glypican-3 Immunomagnetic Fluorescent Nanodevice. International Journal of Nanomedicine, 2021, Volume 16, 4161-4173.	3.3	8
83	Docking and molecular dynamics studies on the interaction of four imidazoline derivatives with potassium ion channel (Kir6.2). Molecular Simulation, 2010, 36, 166-174.	0.9	7
84	A density functional theory study on the catalytic mechanism of hydroxycinnamoyl-CoA hydratase-lyase. International Journal of Quantum Chemistry, 2014, 114, 249-254.	1.0	7
85	A QM/MM study of the reaction mechanism of (R)â€hydroxynitrile lyases from <i>Arabidopsis thaliana</i> (AtHNL). Proteins: Structure, Function and Bioinformatics, 2015, 83, 66-77.	1.5	7
86	Cleavage mechanism of the aliphatic C–C bond catalyzed by 2,4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP: a QM/MM study. Catalysis Science and Technology, 2017, 7, 911-922.	2.1	7
87	Tyrosyl Radical-Mediated Sequential Oxidative Decarboxylation of Coproporphyrinogen III through PCET: Theoretical Insights into the Mechanism of Coproheme Decarboxylase ChdC. Inorganic Chemistry, 2021, 60, 13539-13549.	1.9	7
88	Computational Study of the C5-Hydroxylation Mechanism Catalyzed by the Diiron Monooxygenase PtmU3 as Part of the Platensimycin Biosynthesis. Inorganic Chemistry, 2021, 60, 17783-17796.	1.9	7
89	Mechanistic Insights into Pyridine Ring Degradation Catalyzed by 2,5-Dihydroxypyridine Dioxygenase NicX. Inorganic Chemistry, 2022, 61, 2517-2529.	1.9	7
90	Artificial Assembled Macrophage Co-Deliver Black Phosphorus Quantum Dot and CDK4/6 Inhibitor for Colorectal Cancer Triple-Therapy. ACS Applied Materials & Interfaces, 2022, 14, 20628-20640.	4.0	7

#	Article	IF	CITATIONS
91	STUDY ON THE INTERACTIONS OF Smac MIMETICS WITH XIAP-BIR3 DOMAIN BY DOCKING AND MOLECULAR DYNAMICS SIMULATIONS. Journal of Theoretical and Computational Chemistry, 2010, 09, 797-812.	1.8	6
92	Mechanistic insights into the γ-elimination reaction of l-methionine catalyzed by methionine γ-lyase (MGL). Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	6
93	A Novel ZnONPs/PVA-Functionalized Biomaterials for Bacterial Cells Immobilization and its Strengthening Effects on Quinoline Biodegradation. Current Microbiology, 2018, 75, 316-322.	1.0	6
94	Preparation and evaluation of etoposide-loaded lipid-based nanosuspensions for high-dose treatment of lymphoma. Nanomedicine, 2019, 14, 1403-1427.	1.7	6
95	Catalytic mechanism of the PrhA (V150L/A232S) double mutant involved in the fungal meroterpenoid biosynthetic pathway: a QM/MM study. Physical Chemistry Chemical Physics, 2019, 21, 25658-25668.	1.3	6
96	A QM/MM study of the catalytic mechanism of α-1,4-glucan lyase from the red seaweed Gracilariopsis lemaneiformis. RSC Advances, 2014, 4, 54398-54408.	1.7	5
97	QM/MM studies of the mechanism of unusual bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Physical Chemistry Chemical Physics, 2014, 16, 11366.	1.3	5
98	Exploring the substrate-assisted acetylation mechanism by UDP-linked sugar N-acetyltransferase from QM/MM calculations: the role of residue Asn84 and the effects of starting geometries. RSC Advances, 2015, 5, 7781-7788.	1.7	5
99	Evaluation and quantification of genotoxicity of urban waters by using <i>Vicia faba</i> bioassays. Chemistry and Ecology, 2017, 33, 669-683.	0.6	5
100	A QM/MM study of the catalytic mechanism of SAM methyltransferase RlmN from <i>Escherichia coli</i> . Proteins: Structure, Function and Bioinformatics, 2017, 85, 1967-1974.	1.5	5
101	Mechanism of Uncoupled Carbocyclization and Epimerization Catalyzed by Two Non-Heme Iron/α-Ketoglutarate Dependent Enzymes. Journal of Chemical Information and Modeling, 2019, 59, 5086-5098.	2.5	5
102	Gas-blasting nanocapsules to accelerate carboplatin lysosome release and nucleus delivery for prostate cancer treatment. Asian Journal of Pharmaceutical Sciences, 2021, 16, 192-202.	4.3	5
103	A Hybrid Control Architecture for Connection Management in Translucent WDM Networks. , 2008, , .		4
104	Theoretical studies on the interaction of guanine riboswitch with guanine and its closest analogues. Molecular Simulation, 2010, 36, 929-938.	0.9	4
105	QM/MM investigation on the catalytic mechanism of Bacteroides thetaiotaomicron α-glucosidase BtGH97a. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 750-758.	1.1	4
106	Investigation of the rescue mechanism catalyzed by a nucleophile mutant of rice BGlu1. Journal of Molecular Graphics and Modelling, 2014, 54, 100-106.	1.3	4
107	A QM/MM study of the catalytic mechanism of succinic semialdehyde dehydrogenase from Synechococcus sp. PCC 7002 and Salmonella typhimurium. RSC Advances, 2015, 5, 101672-101682.	1.7	4
108	QM/MM studies on the calciumâ€assisted βâ€elimination mechanism of pectate lyase from <i>bacillus subtilis</i> . Proteins: Structure, Function and Bioinformatics, 2016, 84, 1606-1615.	1.5	4

#	Article	IF	CITATIONS
109	Exploring the substrate specificity and catalytic mechanism of imidazolonepropionase (Hutl) from Bacillus subtilis. Physical Chemistry Chemical Physics, 2016, 18, 27928-27938.	1.3	4
110	Structures and photoelectric properties of five benzotrithiophene isomers-based donor–acceptor copolymers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 262-268.	2.0	4
111	Mechanistic Insights into the Oxidative Rearrangement Catalyzed by the Unprecedented Dioxygenase ChaP Involved in Chartreusin Biosynthesis. Inorganic Chemistry, 2020, 59, 13988-13999.	1.9	4
112	Formation Mechanism of Cofactor Cys–Tyr in the Cysteine Dioxygenases (CDO and) Tj ETQq0 0 0 rgBT /Overlo 7844-7856.	ock 10 Tf 1.9	50 627 Td (F 4
113	Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 129-138.	4.3	4
114	QM/MM study on the catalytic mechanism of cyclohexane-1,2-dione hydrolase (CDH). Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	3
115	Theoretical study of the hydrolysis mechanism of 2-pyrone-4,6-dicarboxylate (PDC) catalyzed by LigI. Journal of Molecular Graphics and Modelling, 2015, 61, 21-29.	1.3	3
116	Quantum Mechanics and Molecular Mechanics Study of the Catalytic Mechanism of Human AMSH-LP Domain Deubiquitinating Enzymes. Biochemistry, 2015, 54, 5225-5234.	1.2	3
117	Theoretical studies of traditional and halogen-shared halogen bonds: the doped all-metal aromatic clusters MAI3 â~' (MÂ=ÂSi, Ge, Sn, Pb) as halogen bond acceptors. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	3
118	Quantum mechanics and molecular mechanics study of the reaction mechanism of quorum quenching enzyme: N-acyl homoserine lactonase with C6-HSL. RSC Advances, 2016, 6, 23396-23402.	1.7	3
119	Theoretical insights into the protonation states of active site cysteine and citrullination mechanism of <i>Porphyromonas gingivalis</i> peptidylarginine deiminase. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1518-1528.	1.5	3
120	Unified D-α-Tocopherol 5-Fu/SAHA bioconjugates self-assemble as complex nanodrug for optimized combination therapy. Nanomedicine, 2018, 13, 1285-1301.	1.7	3
121	DT7 peptide-modified lecithin nanoparticles co-loaded with Î ³ -secretase inhibitor and dexamethasone efficiently inhibit T-cell acute lymphoblastic leukemia and reduce gastrointestinal toxicity. Cancer Letters, 2022, 533, 215608.	3.2	3
122	Inner-sphere reorganization for redox pairs M(NH3)62+/3+ (M=Mn, Fe, and Co): Models and calculations. International Journal of Quantum Chemistry, 2002, 86, 468-477.	1.0	2
123	Theoretical Study on the Mechanism for the Addition Reaction of SiH3with Propylene and Acetic Acid. Journal of Physical Chemistry A, 2006, 110, 12439-12442.	1.1	2
124	3Dâ€QSAR Studies on C24â€Monoalkylated Vitamin D ₃ 26,23‣actones and their C2 <i>α</i> â€Modified Derivatives with Inhibitory Activity to Vitamin D Receptor. Molecular Informatics, 2010, 29, 621-632.	1.4	2
125	Theoretical studies on the conformational change of adenosine kinase induced by inhibitors. International Journal of Quantum Chemistry, 2011, 111, 3980-3990.	1.0	2
126	Comparative Studies on the Discrepant Fragmentation Mechanisms of the Gly-Asp-Gly-Arg and Arg-Gly-Asp-Gly: Evidence for the Mobile Proton Model. European Journal of Mass Spectrometry, 2014, 20, 317-325.	0.5	2

#	Article	IF	CITATIONS
127	Theoretical identification on the role of Lys15 for Sulfolobus tokodaii hexokinase. RSC Advances, 2015, 5, 18622-18632.	1.7	2
128	Theoretical study of the hydrolysis mechanism of dihydrocoumarin catalyzed by serum paraoxonase 1 (PON1): different roles of Glu53 and His115 for catalysis. RSC Advances, 2016, 6, 60376-60384.	1.7	2
129	QM/MM studies of the type II isopentenyl diphosphate–dimethylallyl diphosphate isomerase demonstrate a novel role for the flavin coenzyme. RSC Advances, 2017, 7, 22286-22293.	1.7	2
130	A water-assisted nucleophilic mechanism utilized by BphD, the meta-cleavage product hydrolase in biphenyl degradation. Journal of Molecular Graphics and Modelling, 2017, 76, 448-455.	1.3	2
131	Tuning the electronic and optical properties of NDT-based conjugated polymers by adopting fused heterocycles as acceptor units: a theoretical study. Journal of Molecular Modeling, 2017, 23, 225.	0.8	2
132	Computational evidence for the importance of lysine carboxylation in the reaction catalyzed by carboxyl transferase domain of pyruvate carboxylase: a QM/MM study. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
133	Computational Study of the Peroxygenase Mechanism Catalyzed by Hemoglobin Dehaloperoxidase Involved in the Degradation of Chlorophenols. Inorganic Chemistry, 2022, 61, 2628-2639.	1.9	2
134	Mechanism of Sugar Ring Contraction and Closure Catalyzed by UDP- <scp>d</scp> -apiose/UDP- <scp>d</scp> -xylose Synthase (UAXS). Journal of Chemical Information and Modeling, 2022, 62, 632-646.	2.5	2
135	Computational Study of Aromatic Hydroxylation Catalyzed by the Iron-Dependent Hydroxylase PqqB Involved in the Biosynthesis of Redox Cofactor Pyrroloquinoline Quinone. Inorganic Chemistry, 2022, 61, 5943-5956.	1.9	2
136	The reaction mechanism of UDP-GlcNAc 5,6-dehydratase: a quantum mechanical/molecular mechanical (QM/MM) study. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	1
137	Long time molecular dynamic simulation on the agonist binding and activation of the \hat{l}^2 (sub>2 -adrenergic receptor. Molecular Simulation, 2015, 41, 564-571.	0.9	1
138	Theoretical study of the catalytic mechanism of glyoxylate carboligase and its mutant V51E. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	1
139	Inactivation Mechanism of Neuronal Nitric Oxide Synthase by (<i>S</i>)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid: Chemical Conversion of the Inactivator in the Active Site. Inorganic Chemistry, 2021, 60, 9345-9358.	1.9	1
140	Mechanistic Insights into the Anaerobic Degradation of Globally Abundant Dihydroxypropanesulfonate Catalyzed by the DHPS-Sulfolyase (HpsG). Journal of Chemical Information and Modeling, 2022, 62, 2880-2888.	2.5	1
141	Theoretical studies on the structural rearrangement of ligand binding pocket in human vitamin D receptor. International Journal of Quantum Chemistry, 2011, 111, 3928-3937.	1.0	0
142	Insight into the Predictive Binding Modes of the Influenza a Neuraminidase in Complexes with Avian and Human Receptor Analogues. Avian Biology Research, 2014, 7, 172-179.	0.4	0