Zhiming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3202813/publications.pdf Version: 2024-02-01

ZHIMING YANG

#	Article	lF	CITATIONS
1	Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 2007, 96, 225-242.	1.4	538
2	Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 2015, 110, 1541-1575.	3.8	374
3	A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 2015, 43, 247-250.	4.4	359
4	The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews, 2009, 36, 25-51.	2.7	321
5	Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 2011, 39, 21-45.	2.7	260
6	Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geology Reviews, 2009, 36, 133-159.	2.7	214
7	High-Mg Diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. Journal of Petrology, 2015, 56, 227-254.	2.8	193
8	Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita, 2013, 48, 173-192.	4.1	181
9	Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo Au Mineralization. Economic Geology, 2014, 109, 1943-1965.	3.8	179
10	Increased Magmatic Water ContentThe Key to Oligo-Miocene Porphyry Cu-Mo Au Formation in the Eastern Gangdese Belt, Tibet. Economic Geology, 2014, 109, 1315-1339.	3.8	179
11	Fluid flux melting generated postcollisional high Sr/Y copper ore–forming water-rich magmas in Tibet. Geology, 2015, 43, 583-586.	4.4	177
12	The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth and Planetary Science Letters, 2006, 244, 234-250.	4.4	166
13	Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan, Western Yangtze Craton, China: Compositional Characteristics, Sources, and Implications for Continental Collision Metallogeny. Economic Geology, 2013, 108, 1541-1576.	3.8	144
14	Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments. Scientific Reports, 2015, 5, 10231.	3.3	113
15	Ultrapotassic rocks and xenoliths from South Tibet: Contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision. Geology, 2017, 45, 51-54.	4.4	98
16	The giant Dexing porphyry Cu–Mo–Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting. Mineralium Deposita, 2013, 48, 1019-1045.	4.1	96
17	Geoâ€ <i>f</i> O ₂ : Integrated Software for Analysis of Magmatic Oxygen Fugacity. Geochemistry, Geophysics, Geosystems, 2019, 20, 2542-2555.	2.5	69
18	Extent of underthrusting of the Indian plate beneath Tibet controlled the distribution of Miocene porphyry Cu–Mo ± Au deposits. Mineralium Deposita, 2014, 49, 165-173.	4.1	66

ZHIMING YANG

#	Article	IF	CITATIONS
19	Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting. Geology, 2019, 47, 135-138.	4.4	65
20	Geology and origin of the post-collisional Narigongma porphyry Cu–Mo deposit, southern Qinghai, Tibet. Gondwana Research, 2014, 26, 536-556.	6.0	60
21	Porphyry mineralization in the Tethyan orogen. Science China Earth Sciences, 2020, 63, 2042-2067.	5.2	56
22	Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones. Lithos, 2016, 245, 243-257.	1.4	53
23	Origin of dioritic magma and its contribution to porphyry Cu–Au mineralization at Pulang in the Yidun arc, eastern Tibet. Lithos, 2018, 304-307, 436-449.	1.4	38
24	Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	37
25	EVALUATION OF INTER-INSTRUMENT VARIATIONS AMONG SHORT WAVELENGTH INFRARED (SWIR) DEVICES. Economic Geology, 2012, 107, 1479-1488.	3.8	35
26	Age, igneous petrogenesis, and tectonic setting of the Bilihe gold deposit, China, and implications for regional metallogeny. Gondwana Research, 2016, 34, 296-314.	6.0	33
27	Redox state of southern Tibetan upper mantle and ultrapotassic magmas. Geology, 2020, 48, 733-736.	4.4	27
28	Geochemical differences between subduction- and collision-related copper-bearing porphyries and implications for metallogenesis. Ore Geology Reviews, 2015, 70, 424-437.	2.7	25
29	Lower-Crustal Magmatic Hornblendite in North China Craton: Insight into the Genesis of Porphyry Cu Deposits. Economic Geology, 2015, 110, 1879-1904.	3.8	20
30	Equilibrium lithium isotope fractionation in Li-bearing minerals. Geochimica Et Cosmochimica Acta, 2018, 235, 360-375.	3.9	20
31	MAGMATIC Au MINERALIZATION AT THE BILIHE Au DEPOSIT, CHINA. Economic Geology, 2015, 110, 1661-1668.	3.8	18
32	Mineral Resource Science in China: Review and perspective. Geography and Sustainability, 2021, 2, 107-114.	4.3	17
33	Understanding the evolution of magmatic-hydrothermal systems based on microtextural relationships, fluid inclusion petrography, and quartz solubility constraints: insights into the formation of the Yulong Cu-Mo porphyry deposit, eastern Tibetan Plateau, China. Mineralium Deposita, 2021, 56, 823-842	4.1	11
34	Lithium isotope traces magmatic fluid in a seafloor hydrothermal system. Scientific Reports, 2015, 5, 13812.	3.3	10
35	Enrichment Nature of Ultrapotassic Rocks in Southern Tibet Inherited from their Mantle Source. Journal of Petrology, 2021, 62, .	2.8	9
36	Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in post-collisional adakitic rocks. Geochimica Et Cosmochimica Acta, 2022, 332, 19-32	3.9	5

#	Article	IF	CITATIONS
37	Characteristics and evolution of ore-forming fluids of the Chongjiang copper deposit in the Gangdise porphyry copper belt, Tibet. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 97-102.	0.2	2
38	Exhumation of the Late Cretaceous Oreâ€forming Porphyries in Zhongdian area, Northwestern Yunnan: Evidence from Fission Track Analysis. Acta Geologica Sinica, 0, , .	1.4	1