Silvia Lampis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3202764/publications.pdf

Version: 2024-02-01

50 papers	2,419 citations	27 h-index	223791 46 g-index
50	50	50	2891
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Frontiers in Microbiology, 2015, 6, 584.	3.5	189
2	Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial Biotechnology, 2016, 9, 758-771.	4.2	187
3	Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Journal of Hazardous Materials, 2017, 324, 3-14.	12.4	135
4	Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microbial Cell Factories, 2014, 13, 35.	4.0	133
5	Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Process Biochemistry, 2010, 45, 714-723.	3.7	109
6	Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Frontiers in Plant Science, 2015, 6, 80.	3.6	107
7	Proteomic analysis of <i>Arabidopsis halleri</i> shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics, 2009, 9, 4837-4850.	2.2	105
8	Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere, 2013, 92, 688-694.	8.2	97
9	Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnology, 2017, 34, 1-11.	4.4	95
10	Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environment International, 2005, 31, 233-241.	10.0	93
11	Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere, 2006, 63, 293-299.	8.2	89
12	Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiological Research, 2016, 183, 42-52.	5.3	77
13	Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microbial Cell Factories, 2017, 16, 215.	4.0	76
14	Anaerobic acidogenic digestion of olive mill wastewaters in biofilm reactors packed with ceramic filters or granular activated carbon. Water Research, 2010, 44, 4537-4549.	11.3	75
15	Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological Research, 2019, 219, 123-131.	5.3	71
16	Antimicrobial activity of biogenically produced spherical Seâ€nanomaterials embedded in organic material against <i>Pseudomonas aeruginosa</i> andÂ <i>Staphylococcus aureus</i> strains on hydroxyapatiteâ€coated surfaces. Microbial Biotechnology, 2017, 10, 804-818.	4.2	67
17	Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. Journal of Environmental Management, 2015, 153, 121-131.	7.8	66
18	<i>Stenotrophomonas maltophilia</i> SeITE02, a New Bacterial Strain Suitable for Bioremediation of Selenite-Contaminated Environmental Matrices. Applied and Environmental Microbiology, 2007, 73, 6854-6863.	3.1	53

#	Article	IF	CITATIONS
19	Burkholderia fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated soils. FEMS Microbiology Letters, 2011, 319, 11-18.	1.8	52
20	Effect of the anode feeding composition on the performance of a continuous-flow methane-producing microbial electrolysis cell. Environmental Science and Pollution Research, 2015, 22, 7349-7360.	5.3	50
21	On the Ability of Perfluorohexane Sulfonate (PFHxS) Bioaccumulation by Two Pseudomonas sp. Strains Isolated from PFAS-Contaminated Environmental Matrices. Microorganisms, 2020, 8, 92.	3.6	49
22	Developments in the study and applications of bacterial transformations of selenium species. Critical Reviews in Biotechnology, 2020, 40, 1250-1264.	9.0	44
23	Influence of different household Food Wastes Fractions on Volatile Fatty Acids production by anaerobic fermentation. Bioresource Technology, 2021, 335, 125289.	9.6	40
24	Physical–Chemical Properties of Biogenic Selenium Nanostructures Produced by Stenotrophomonas maltophilia SeITEO2 and Ochrobactrum sp. MPV1. Frontiers in Microbiology, 2018, 9, 3178.	3.5	37
25	Rhizosphere-induced Selenium Precipitation for Possible Applications in Phytoremediation of Se Polluted Effluents. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2005, 60, 349-356.	1.4	30
26	Brassica juncea can improve selenite and selenate abatement in selenium contaminated soils through the aid of its rhizospheric bacterial population. Plant and Soil, 2006, 285, 233-244.	3.7	30
27	Biogenic selenium nanoparticles synthesized by <i>Stenotrophomonas maltophilia</i> Se <scp>ITE</scp> 02 loose antibacterial and antibiofilm efficacy as a result of the progressive alteration of their organic coating layer. Microbial Biotechnology, 2018, 11, 1037-1047.	4.2	30
28	Biomolecular composition of capping layer and stability of biogenic selenium nanoparticles synthesized by five bacterial species. Microbial Biotechnology, 2021, 14, 198-212.	4.2	26
29	Selenite resistant rhizobacteria stimulate SeO3 2– phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds. Environmental Science and Pollution Research, 2009, 16, 663-670.	5.3	25
30	Influence of Bacterial Physiology on Processing of Selenite, Biogenesis of Nanomaterials and Their Thermodynamic Stability. Molecules, 2019, 24, 2532.	3.8	23
31	Trichoderma longibrachiatum Evx1 is a fungal biocatalyst suitable for the remediation of soils contaminated with diesel fuel and polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research, 2016, 23, 9134-9143.	5.3	19
32	Bioremediation of diesel contamination at an underground storage tank site: a spatial analysis of the microbial community. World Journal of Microbiology and Biotechnology, 2016, 32, 6.	3.6	19
33	Selenium and tellurium nanomaterials. ChemistrySelect, 2018, 3, .	1.5	18
34	Role and characteristics of problematic biofilms within the removal and mobility of trace metals in a pilot-scale membrane bioreactor. Process Biochemistry, 2013, 48, 1757-1766.	3.7	17
35	Effects of the Sludge Retention Time and Carbon Source on Polyhydroxyalkanoate-Storing Biomass Selection under Aerobic-Feast and Anoxic-Famine Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9455-9464.	6.7	14
36	Two-Stage Start-Up to Achieve the Stable via-Nitrite Pathway in a Demonstration SBR for Anaerobic Codigestate Treatment. Industrial & Engineering Chemistry Research, 2012, 51, 15423-15430.	3.7	11

#	Article	IF	Citations
37	In Vivo Endophytic, Rhizospheric and Epiphytic Colonization of Vitis vinifera by the Plant-Growth Promoting and Antifungal Strain Pseudomonas protegens MP12. Microorganisms, 2021, 9, 234.	3.6	11
38	Microbial-Based Bioremediation of Selenium and Tellurium Compounds., 0,,.		9
39	Polyhydroxyalkanoated-Rich Microbial Cells from Bio-Based Volatile Fatty Acids as Potential Ingredient for Aquaculture Feed. Energies, 2021, 14, 38.	3.1	7
40	Identification of aldolase and ferredoxin reductase within the <i>dbt</i> operon of <i>Burkholderia fungorum</i> DBT1. Journal of Basic Microbiology, 2014, 54, 464-469.	3.3	6
41	A comparison of the response of two <i>Burkholderia fungorum</i> strains grown as planktonic cells versus biofilm to dibenzothiophene and select polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 2016, 62, 851-860.	1.7	6
42	Untargeted Metabolomics Investigation on Selenite Reduction to Elemental Selenium by Bacillus mycoides SelTE01. Frontiers in Microbiology, 2021, 12, 711000.	3.5	6
43	Draft Genome Sequence of Stenotrophomonas maltophilia SeITE02, a Gammaproteobacterium Isolated from Selenite-Contaminated Mining Soil. Genome Announcements, 2014, 2, .	0.8	5
44	Biogenic SeNPs from Bacillus mycoides SelTE01 and Stenotrophomonas maltophilia SelTE02: Characterization with reference to their associated organic coating. AIP Conference Proceedings, 2017, , .	0.4	3
45	Diversity, Distribution and Functional Role of Bacterial Endophytes in Vitis vinifera. Sustainable Development and Biodiversity, 2017, , 233-266.	1.7	3
46	Inside and outside rhizosphere parameters of barley and dose-dependent stress alleviation at some chronic metal exposures. Acta Phytopathologica Et Entomologica Hungarica, 2012, 47, 373-383.	0.2	2
47	Apple seeds in an excavated Roman amphora remained intact for 2000†years despite exposure to a broadly-degrading microbial community. Journal of Archaeological Science: Reports, 2019, 25, 472-485.	0.5	2
48	Proteomic Study of the Outer Layer of Biogenic Selenium Nanoparticles. , 0, , .		1
49	Emergence of random selections in evolution of biological populations. Theoretical Computer Science, 2021, 862, 130-143.	0.9	0
50	Conjugate word blending: formal model and experimental implementation by XPCR. Natural Computing, 2021, 20, 647-658.	3.0	0