
Lance M Wheeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3202516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced mobility CsPbI ₃ quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Science Advances, 2017, 3, eaao4204.	4.7	801
2	Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. Journal of the American Chemical Society, 2018, 140, 10504-10513.	6.6	303
3	Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 2558-2565.	8.8	199
4	Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy and Environmental Science, 2016, 9, 2072-2082.	15.6	188
5	Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals. Nature Communications, 2013, 4, 2197.	5.8	107
6	Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nature Communications, 2017, 8, 1722.	5.8	107
7	Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic–Inorganic Hybrid Perovskite Nanocrystals. ACS Nano, 2020, 14, 8816-8825.	7.3	94
8	Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions. ACS Energy Letters, 2018, 3, 979-985.	8.8	84
9	Silyl Radical Abstraction in the Functionalization of Plasma-Synthesized Silicon Nanocrystals. Chemistry of Materials, 2015, 27, 6869-6878.	3.2	72
10	Cslâ€Antisolvent Adduct Formation in Allâ€Inorganic Metal Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903365.	10.2	55
11	Reversible multicolor chromism in layered formamidinium metal halide perovskites. Nature Communications, 2020, 11, 5234.	5.8	48
12	Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase. Journal of Physical Chemistry Letters, 2013, 4, 3392-3396.	2.1	45
13	Temperature Coefficients of Perovskite Photovoltaics for Energy Yield Calculations. ACS Energy Letters, 2021, 6, 2038-2047.	8.8	43
14	Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy. Chemistry of Materials, 2017, 29, 10339-10351.	3.2	37
15	All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange. Nano Letters, 2016, 16, 1949-1954.	4.5	32
16	Thermodynamic Driving Force in the Spontaneous Formation of Inorganic Nanoparticle Solutions. Nano Letters, 2018, 18, 1888-1895.	4.5	27
17	Broadband Absorbing Exciton–Plasmon Metafluids with Narrow Transparency Windows. Nano Letters, 2016, 16, 1472-1477.	4.5	23
18	Beyond Strain: Controlling the Surface Chemistry of CsPbl ₃ Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials, 2020, 32, 7850-7860.	3.2	23

LANCE M WHEELER

#	Article	IF	CITATIONS
19	Reversible Methanolation of Metal Halide Perovskites. Journal of the American Chemical Society, 2022, 144, 667-672.	6.6	23
20	Detailed Balance Analysis of Photovoltaic Windows. ACS Energy Letters, 2019, 4, 2130-2136.	8.8	22
21	Complementary interface formation toward high-efficiency all-back-contact perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100363.	2.8	17
22	Dynamic Evolution of 2D Layers within Perovskite Nanocrystals via Salt Pair Extraction and Reinsertion. Journal of Physical Chemistry C, 2018, 122, 14029-14038.	1.5	14
23	Atomically Thin Metal Sulfides. Journal of the American Chemical Society, 2019, 141, 12121-12127.	6.6	13
24	Dual Phase Change Thermal Diodes with High Rectification for Thermal Management near Room Temperature. Advanced Materials Technologies, 0, , 2101060.	3.0	5
25	Morphological Control of InxGa1–xP Nanocrystals Synthesized in a Nonthermal Plasma. Chemistry of Materials, 2018, 30, 3131-3140.	3.2	3