S Mas-Coma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3202458/publications.pdf

Version: 2024-02-01

361413 315739 3,385 38 20 38 h-index citations g-index papers 38 38 38 2445 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	One Health Action against Human Fascioliasis in the Bolivian Altiplano: Food, Water, Housing, Behavioural Traditions, Social Aspects, and Livestock Management Linked to Disease Transmission and Infection Sources. International Journal of Environmental Research and Public Health, 2022, 19, 1120.	2.6	13
2	Research on Schistosomiasis in the Era of the COVID-19 Pandemic: A Bibliometric Analysis. International Journal of Environmental Research and Public Health, 2022, 19, 8051.	2.6	3
3	Buffalo Infection by Fasciola gigantica Transmitted by Radix acuminata in Uttar Pradesh, India: A Molecular Tool to Improve Snail Vector Epidemiology Assessments and Control Surveillance. Acta Parasitologica, 2021, 66, 1396-1405.	1.1	4
4	DNA Multi-Marker Genotyping and CIAS Morphometric Phenotyping of Fasciola gigantica-Sized Flukes from Ecuador, with an Analysis of the Radix Absence in the New World and the Evolutionary Lymnaeid Snail Vector Filter. Animals, 2021, 11, 2495.	2.3	10
5	Very High Fascioliasis Intensities in Schoolchildren from Nile Delta Governorates, Egypt: The Old World Highest Burdens Found in Lowlands. Pathogens, 2021, 10, 1210.	2.8	11
6	Fascioliasis in Llama, Lama glama, in Andean Endemic Areas: Experimental Transmission Capacity by the High Altitude Snail Vector Galba truncatula and Epidemiological Analysis of Its Reservoir Role. Animals, 2021, 11, 2693.	2.3	8
7	West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transboundary and Emerging Diseases, 2021, , .	3.0	6
8	Morphological and genomic characterisation of the Schistosoma hybrid infecting humans in Europe reveals admixture between Schistosoma haematobium and Schistosoma bovis. PLoS Neglected Tropical Diseases, 2021, 15, e0010062.	3.0	22
9	Equines as reservoirs of human fascioliasis: transmission capacity, epidemiology and pathogenicity in <i>Fasciola hepatica</i> -infected mules. Journal of Helminthology, 2020, 94, e189.	1.0	9
10	Impact of fascioliasis reinfection on Fasciola hepatica egg shedding: relationship with the immune-regulatory response. Acta Tropica, 2020, 209, 105518.	2.0	13
11	Genetically â€~pure' <i>Fasciola gigantica</i> discovered in Algeria: DNA multimarker characterization, transâ€Saharan introduction from a Sahel origin and spreading risk into northâ€western Maghreb countries. Transboundary and Emerging Diseases, 2020, 67, 2190.	3.0	13
12	COVID-19 and globalization. One Health, 2020, 9, 100132.	3.4	50
13	Human fascioliasis emergence risks in developed countries: From individual patients and small epidemics to climate and global change impacts. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2020, 38, 253-256.	0.5	16
14	Fascioliasis. Advances in Experimental Medicine and Biology, 2019, 1154, 71-103.	1.6	82
15	Fasciola hepatica infection in children actively detected in a survey in rural areas of Mardan district, Khyber Pakhtunkhawa province, northern Pakistan. Parasitology International, 2019, 69, 39-46.	1.3	16
16	Numerous <i>Fasciola </i> plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology, 2019, 146, 284-298.	1.5	41
17	Fasciola hepatica eggs in paleofaeces of the Persian onager Equus hemionus onager, a donkey from Chehrabad archaeological site, dating back to the Sassanid Empire (224–651 AD), in ancient Iran. Infection, Genetics and Evolution, 2018, 62, 233-243.	2.3	17
18	Human fascioliasis infection sources, their diversity, incidence factors, analytical methods and prevention measures. Parasitology, 2018, 145, 1665-1699.	1.5	145

#	Article	IF	CITATIONS
19	Higher physiopathogenicity by (i) Fasciola gigantica (i) than by the genetically close (i) F. hepatica (i): experimental long-term follow-up of biochemical markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110, 55-66.	1.8	57
20	Epidemiological analysis of human fascioliasis in northeastern Punjab, Pakistan. Acta Tropica, 2016, 156, 157-164.	2.0	23
21	Pilot study on the combination of an organophosphate-based insecticide paint and pyrethroid-treated long lasting nets against pyrethroid resistant malaria vectors in Burkina Faso. Acta Tropica, 2015, 148, 162-169.	2.0	18
22	Dicrocoelium dendriticum found in a Bronze Age cemetery in western Iran in the pre-Persepolis period: The oldest Asian palaeofinding in the present human infection hottest spot region. Parasitology International, 2015, 64, 251-255.	1.3	19
23	Neurological and Ocular Fascioliasis in Humans. Advances in Parasitology, 2014, 84, 27-149.	3.2	93
24	Fascioliasis. Advances in Experimental Medicine and Biology, 2014, 766, 77-114.	1.6	73
25	Fascioliasis: A worldwide parasitic disease of importance in travel medicine. Travel Medicine and Infectious Disease, 2014, 12, 636-649.	3.0	106
26	Direct and indirect affection of the central nervous system by Fasciola infection. Handbook of Clinical Neurology / Edited By PJ Vinken and G W Bruyn, 2013, 114, 297-310.	1.8	11
27	Fascioliasis and Intestinal Parasitoses Affecting Schoolchildren in Atlixco, Puebla State, Mexico: Epidemiology and Treatment with Nitazoxanide. PLoS Neglected Tropical Diseases, 2013, 7, e2553.	3.0	89
28	Hyperendemic human fascioliasis in Andean valleys: An altitudinal transect analysis in children of Cajamarca province, Peru. Acta Tropica, 2011, 120, 119-129.	2.0	94
29	Renylaima capensis n. gen., n. sp. (Trematoda: Brachylaimidae) from the urinary system of the shrew Myosorex varius Smuts, 1832 (Insectivora: Soricidae). Parasitology Research, 2010, 106, 1443-1453.	1.6	6
30	Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology, 2009, 163, 264-280.	1.8	301
31	Fascioliasis and other plant-borne trematode zoonoses. International Journal for Parasitology, 2005, 35, 1255-1278.	3.1	722
32	Epidemiology of fascioliasis in human endemic areas. Journal of Helminthology, 2005, 79, 207-216.	1.0	311
33	Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitology Research, 2004, 94, 61-9.	1.6	94
34	European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infection, Genetics and Evolution, 2001, 1, 85-107.	2.3	198
35	Fasciola hepatica and lymnaeid snails occurring at very high altitude in South America. Parasitology, 2001, 123, 115-127.	1.5	154
36	Analysis of climatic data and forecast indices for human fascioliasis at very high altitude. Annals of Tropical Medicine and Parasitology, 1999, 93, 835-850.	1.6	57

#	Article	IF	CITATIONS
37	Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research, 1998, 84, 478-484.	1.6	398

18S rRNA gene sequences and phylogenetic relationships of European hard-tick species (Acari:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 70