Bruce S Dunn ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/320240/publications.pdf Version: 2024-02-01 236 papers 62,556 citations 74 h-index 9234 225 g-index 243 all docs 243 docs citations 243 times ranked 40571 citing authors | # | Article | IF | CITATIONS | |----|---|------|-----------| | 1 | Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011, 334, 928-935. | 6.0 | 11,724 | | 2 | Where Do Batteries End and Supercapacitors Begin?. Science, 2014, 343, 1210-1211. | 6.0 | 4,605 | | 3 | Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy and Environmental Science, 2014, 7, 1597. | 15.6 | 4,223 | | 4 | High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials, 2013, 12, 518-522. | 13.3 | 4,021 | | 5 | Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO ₂ (Anatase)
Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 14925-14931. | 1.5 | 3,863 | | 6 | Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Materials, 2010, 9, 146-151. | 13.3 | 2,801 | | 7 | Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280. | 23.0 | 2,379 | | 8 | Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3â^'x. Nature Materials, 2017, 16, 454-460. | 13.3 | 1,632 | | 9 | Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating.
Nature, 1997, 389, 364-368. | 13.7 | 1,417 | | 10 | Multidimensional materials and device architectures for future hybrid energy storage. Nature Communications, 2016, 7, 12647. | 5.8 | 1,281 | | 11 | Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage.
Science, 2017, 356, 599-604. | 6.0 | 1,229 | | 12 | Three-Dimensional Battery Architectures. Chemical Reviews, 2004, 104, 4463-4492. | 23.0 | 1,146 | | 13 | Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 2020, 5, 5-19. | 23.3 | 1,138 | | 14 | Templated Nanocrystal-Based Porous TiO ₂ Films for Next-Generation Electrochemical Capacitors. Journal of the American Chemical Society, 2009, 131, 1802-1809. | 6.6 | 887 | | 15 | Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 2018, 122, 194-206. | 1.5 | 854 | | 16 | Highâ€Performance Supercapacitors Based on Intertwined CNT/V ₂ O ₅ Nanowire Nanocomposites. Advanced Materials, 2011, 23, 791-795. | 11.1 | 788 | | 17 | High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites. ACS Nano, 2012, 6, 4319-4327. | 7.3 | 688 | | 18 | Sol-gel encapsulation methods for biosensors. Analytical Chemistry, 1994, 66, 1120A-1127A. | 3.2 | 664 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 19 | Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300. | 11.1 | 615 | | 20 | Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 2017, 3, e1700106. | 4.7 | 588 | | 21 | Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568. | 19.8 | 526 | | 22 | High Performance Pseudocapacitor Based on 2D Layered Metal Chalcogenide Nanocrystals. Nano Letters, 2015, 15, 1911-1917. | 4.5 | 495 | | 23 | Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295. | 7.3 | 484 | | 24 | The Effect of Crystallinity on the Rapid Pseudocapacitive Response of Nb ₂ O ₅ . Advanced Energy Materials, 2012, 2, 141-148. | 10.2 | 461 | | 25 | A fundamental look at electrocatalytic sulfur reduction reaction. Nature Catalysis, 2020, 3, 762-770. | 16.1 | 455 | | 26 | Sulfide Solid Electrolytes for Lithium Battery Applications. Advanced Energy Materials, 2018, 8, 1800933. | 10.2 | 407 | | 27 | Mesoporous MoS ₂ as a Transition Metal Dichalcogenide Exhibiting Pseudocapacitive Li
and Naâ€lon Charge Storage. Advanced Energy Materials, 2016, 6, 1501937. | 10.2 | 395 | | 28 | Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Letters, 2017, 17, 3731-3737. | 4.5 | 377 | | 29 | A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526. | 6.0 | 357 | | 30 | Electrically conductive oxide aerogels: new materials in electrochemistry. Journal of Materials Chemistry, 2001, 11, 963-980. | 6.7 | 340 | | 31 | Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar
Cells via Adduct Approach. Journal of the American Chemical Society, 2018, 140, 6317-6324. | 6.6 | 338 | | 32 | Pseudocapacitive Contributions to Charge Storage in Highly Ordered Mesoporous Group V Transition Metal Oxides with Iso-Oriented Layered Nanocrystalline Domains. Journal of the American Chemical Society, 2010, 132, 6982-6990. | 6.6 | 320 | | 33 | Highâ€Performance Supercapacitors Based on Nanocomposites of Nb ₂ O ₅ Nanocrystals and Carbon Nanotubes. Advanced Energy Materials, 2011, 1, 1089-1093. | 10.2 | 312 | | 34 | Three-dimensional electrodes and battery architectures. MRS Bulletin, 2011, 36, 523-531. | 1.7 | 272 | | 35 | Enhancing Pseudocapacitive Charge Storage in Polymer Templated Mesoporous Materials. Accounts of Chemical Research, 2013, 46, 1113-1124. | 7.6 | 254 | | 36 | Mesoporous Li _{<i>x</i>} Mn ₂ O ₄ Thin Film Cathodes for Lithium-Ion Pseudocapacitors. ACS Nano, 2016, 10, 7572-7581. | 7.3 | 247 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 37 | Synthesis and electrochromic properties of mesoporous tungsten oxide. Journal of Materials Chemistry, 2001, 11, 92-97. | 6.7 | 245 | | 38 | Electrochemical Kinetics of Nanostructured Nb ₂ O ₅ Electrodes. Journal of the Electrochemical Society, 2014, 161, A718-A725. | 1.3 | 235 | | 39 | Probes of Pore Environment and Moleculeâ^'Matrix Interactions in Solâ^'Gel Materials. Chemistry of Materials, 1997, 9, 2280-2291. | 3.2 | 233 | | 40 | Pseudocapacitive Charge Storage in Thick Composite MoS ₂ Nanocrystalâ€Based Electrodes. Advanced Energy Materials, 2017, 7, 1601283. | 10.2 | 230 | | 41 | Creating Lithiumâ€ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks.
Advanced Materials, 2018, 30, e1707476. | 11.1 | 230 | | 42 | Challenges for and Pathways toward Li-Metal-Based All-Solid-State Batteries. ACS Energy Letters, 0, , 1399-1404. | 8.8 | 228 | | 43 | Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials. Chemistry of Materials, 2016, 28, 3937-3943. | 3.2 | 210 | | 44 | Enzymatic activity of glucose oxidase encapsulated in transparent glass by the sol-gel method. Chemistry of Materials, 1992, 4, 495-497. | 3.2 | 197 | | 45 | Highâ€Performance Supercapacitors Based on Hierarchically Porous Graphite Particles. Advanced Energy Materials, 2011, 1, 551-556. | 10.2 | 194 | | 46 | Hierarchical battery electrodes based on inverted opal structures. Journal of Materials Chemistry, 2002, 12, 2859-2861. | 6.7 | 190 | | 47 | Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. Journal of Power Sources, 2008, 178, 795-800. | 4.0 | 175 | | 48 | Protection of lithium metal surfaces using tetraethoxysilane. Journal of Materials Chemistry, 2011, 21, 1593-1599. | 6.7 | 171 | | 49 | The Development of Pseudocapacitive Properties in Nanosized-MoO ₂ . Journal of the Electrochemical Society, 2015, 162, A5083-A5090. | 1.3 | 170 | | 50 | 3-D Microbatteries. Electrochemistry Communications, 2003, 5, 120-123. | 2.3 | 163 | | 51 | Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for Highâ€Rate Full Sodium Ion
Storage Device. Advanced Energy Materials, 2018, 8, 1800058. | 10.2 | 157 | | 52 | Physical Interpretations of Electrochemical Impedance Spectroscopy of Redox Active Electrodes for Electrical Energy Storage. Journal of Physical Chemistry C, 2018, 122, 24499-24511. | 1.5 | 149 | | 53 | Controlled Placement of Luminescent Molecules and Polymers in Mesostructured Solâ^'Gel Thin Films.
Journal of the American Chemical Society, 2001, 123, 1248-1249. | 6.6 | 144 | | 54 | Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906995. | 11.1 | 142 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | Naphthalene Diimide Based Materials with Adjustable Redox Potentials: Evaluation for Organic Lithium-Ion Batteries. Chemistry of Materials, 2014, 26, 7151-7157. | 3.2 | 141 | | 56 | Patterned Hexagonal Arrays of Living Cells in Solâ^'Gel Silica Films. Journal of the American Chemical Society, 2000, 122, 6488-6489. | 6.6 | 136 | | 57 | Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties. Journal of Materials Chemistry, 1999, 9, 45-53. | 6.7 | 134 | | 58 | High Areal Energy Density 3D Lithium-Ion Microbatteries. Joule, 2018, 2, 1187-1201. | 11.7 | 134 | | 59 | On the Correlation between Mechanical Flexibility, Nanoscale Structure, and Charge Storage in Periodic Mesoporous CeO ₂ Thin Films. ACS Nano, 2010, 4, 967-977. | 7.3 | 127 | | 60 | Development of a Three-Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling. Stem Cells Translational Medicine, 2017, 6, 622-633. | 1.6 | 127 | | 61 | Multiply Doped Nanostructured Silicate Solâ^'Gel Thin Films:Â Spatial Segregation of Dopants, Energy
Transfer, and Distance Measurements. Journal of the American Chemical Society, 2005, 127, 2656-2665. | 6.6 | 126 | | 62 | Synthesis and Electrochemical Properties of Vanadium Oxide Aerogels Prepared by a Freeze-Drying Process. Journal of the Electrochemical Society, 2004, 151, A666. | 1.3 | 118 | | 63 | Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215. | 5.8 | 113 | | 64 | The Relationship Between Nanoscale Structure and Electrochemical Properties of Vanadium Oxide Nanorolls. Advanced Functional Materials, 2004, 14, 1197-1204. | 7.8 | 103 | | 65 | In Situ Fluorescence Probing of the Chemical Changes during Sol-Gel Thin Film Formation. Journal of the American Ceramic Society, 1995, 78, 1640-1648. | 1.9 | 99 | | 66 | Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries. ACS Applied Materials & Company: Interfaces, 2016, 8, 32385-32391. | 4.0 | 99 | | 67 | Pseudocapacitive Vanadiumâ€based Materials toward Highâ€Rate Sodiumâ€lon Storage. Energy and Environmental Materials, 2020, 3, 221-234. | 7.3 | 95 | | 68 | In Situ Luminescence Probing of the Chemical and Structural Changes during Formation of Dip-Coated Lamellar Phase Sodium Dodecyl Sulfate Solâ^'Gel Thin Films. Journal of the American Chemical Society, 2000, 122, 3739-3745. | 6.6 | 93 | | 69 | Two-Photon Photographic Production of Three-Dimensional Metallic Structures within a Dielectric Matrix. Advanced Materials, 2000, 12, 1438-1441. | 11.1 | 91 | | 70 | Preparation of High-Tc Superconducting Oxides by the Amorphous Citrate Process. Journal of the American Ceramic Society, 1987, 70, C-375-C-377. | 1.9 | 86 | | 71 | Stabilization of Creatine Kinase Encapsulated in Silicate Solâ°Gel Materials and Unusual Temperature Effects on Its Activity. Chemistry of Materials, 2002, 14, 4300-4306. | 3.2 | 84 | | 72 | In Situ Probing by Fluorescence Spectroscopy of the Formation of Continuous Highly-Ordered Lamellar-Phase Mesostructured Thin Films. Langmuir, 1998, 14, 7331-7333. | 1.6 | 82 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 73 | V2O5 aerogel as a versatile host for metal ions. Journal of Non-Crystalline Solids, 2004, 350, 67-72. | 1.5 | 80 | | 74 | Protection of Lithium Metal Surfaces Using Chlorosilanes. Langmuir, 2007, 23, 11597-11602. | 1.6 | 78 | | 75 | Opening the window for aqueous electrolytes. Science, 2015, 350, 918-918. | 6.0 | 77 | | 76 | Nanostructured Pseudocapacitors Based on Atomic Layer Deposition of V ₂ O ₅ onto Conductive Nanocrystalâ€based Mesoporous ITO Scaffolds. Advanced Functional Materials, 2014, 24, 6717-6728. | 7.8 | 76 | | 77 | NASICON Na ₃ V ₂ (PO ₄) ₃ Enables Quasi-Two-Stage Na ⁺ and Zn ²⁺ Intercalation for Multivalent Zinc Batteries. Chemistry of Materials, 2020, 32, 3028-3035. | 3.2 | 75 | | 78 | Na ₂ Ti ₃ O ₇ Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode. ACS Applied Materials & 2017, 9, 1416-1425. | 4.0 | 72 | | 79 | Ambient Pressure Synthesis of Aerogel-Like Vanadium Oxide and Molybdenum Oxide. Materials
Research Bulletin, 1998, 33, 561-567. | 2.7 | 70 | | 80 | Lithium-ion storage properties of titanium oxide nanosheets. Materials Horizons, 2014, 1, 219-223. | 6.4 | 70 | | 81 | High-rate capability of Na ₂ FePO ₄ F nanoparticles by enhancing surface carbon functionality for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18707-18715. | 5.2 | 70 | | 82 | Synthesis, Densification, and Conductivity Characteristics of BICUVOX Oxygenâ€lonâ€Conducting Ceramics. Journal of the American Ceramic Society, 1997, 80, 2563-2568. | 1.9 | 69 | | 83 | Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-lon Batteries. Chemistry of Materials, 2016, 28, 8357-8365. | 3.2 | 69 | | 84 | Synthesis of ion conducting Li _x Al _y Si _z O thin films by atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 9566-9573. | 5.2 | 68 | | 85 | Designing Pseudocapacitance for Nb ₂ O ₅ /Carbide-Derived Carbon Electrodes and Hybrid Devices. Langmuir, 2017, 33, 9407-9415. | 1.6 | 67 | | 86 | Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon. Journal of Power Sources, 2015, 274, 121-129. | 4.0 | 66 | | 87 | Nanostructured Sol-Gel Electrodes for Biofuel Cells. Journal of the Electrochemical Society, 2007, 154, A140. | 1.3 | 65 | | 88 | Molecules in Glass: Probes, Ordered Assemblies, and Functional Materials. Accounts of Chemical Research, 2007, 40, 747-755. | 7.6 | 65 | | 89 | A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€lon Li ⁺ Solid Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16683-16687. | 7.2 | 65 | | 90 | Differentiating Double-Layer, Psuedocapacitance, and Battery-like Mechanisms by Analyzing Impedance Measurements in Three Dimensions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14071-14078. | 4.0 | 64 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 91 | Electrochemical properties of vanadium oxide aerogels. Science and Technology of Advanced Materials, 2003, 4, 3-11. | 2.8 | 63 | | 92 | Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. ACS Nano, 2017, 11, 7995-8001. | 7.3 | 63 | | 93 | Photonic Materials by the Sol-Gel Process. Journal of the Ceramic Society of Japan, 1991, 99, 878-893. | 1.3 | 61 | | 94 | Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. Nature Electronics, 2020, 3, 630-637. | 13.1 | 61 | | 95 | Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery
Anode. ACS Applied Materials & Diterfaces, 2017, 9, 293-303. | 4.0 | 60 | | 96 | Amorphous VO ₂ : A Pseudocapacitive Platform for Highâ€Rate Symmetric Batteries. Advanced Materials, 2021, 33, e2103736. | 11.1 | 60 | | 97 | Characterization of gold nanoparticle binding to microtubule filaments. Materials Science and Engineering C, 2010, 30, 20-26. | 3.8 | 59 | | 98 | In Situ Fluorescence Probing of Molecular Mobility and Chemical Changes during Formation of Dip-Coated Solâ ⁻ Gel Silica Thin Films. Chemistry of Materials, 2000, 12, 231-235. | 3.2 | 55 | | 99 | Next generation pseudocapacitor materials from sol–gel derived transition metal oxides. Journal of Sol-Gel Science and Technology, 2011, 57, 330-335. | 1.1 | 55 | | 100 | Monolithic Flexible Supercapacitors Integrated into Single Sheets of Paper and Membrane via Vapor Printing. Advanced Materials, 2017, 29, 1606091. | 11.1 | 55 | | 101 | Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nature Nanotechnology, 2022, 17, 153-158. | 15.6 | 55 | | 102 | A Sol-Gel Solid Electrolyte with High Lithium Ion Conductivity. Chemistry of Materials, 1997, 9, 1004-1011. | 3.2 | 54 | | 103 | Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer. ACS Nano, 2016, 10, 324-332. | 7.3 | 54 | | 104 | Future Directions for Electrochemical Capacitors. ACS Energy Letters, 2021, 6, 4311-4316. | 8.8 | 53 | | 105 | Patternable, Solution-Processed Ionogels for Thin-Film Lithium-Ion Electrolytes. Joule, 2017, 1, 344-358. | 11.7 | 52 | | 106 | Kinetics of Anode Reactions for a Yeastâ€Catalysed Microbial Fuel Cell. Fuel Cells, 2009, 9, 44-52. | 1.5 | 51 | | 107 | Multielectron Redox and Insulator-to-Metal Transition upon Lithium Insertion in the Fast-Charging, Wadsley-Roth Phase PNb ₉ O ₂₅ . Chemistry of Materials, 2020, 32, 4553-4563. | 3.2 | 50 | | 108 | Praseodymium Telluride: A High-Temperature, High-ZT Thermoelectric Material. Joule, 2018, 2, 698-709. | 11.7 | 49 | | # | Article | IF | Citations | |-----|--|------|-----------| | 109 | Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-lon Battery Electrodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19063-19073. | 4.0 | 48 | | 110 | Structural and electrochemical properties of amorphous and crystalline molybdenum oxide aerogels. Solid State Ionics, 2001, 144, 31-40. | 1.3 | 47 | | 111 | Application of Poly(3-hexylthiophene-2,5-diyl) as a Protective Coating for High Rate Cathode Materials. Chemistry of Materials, 2018, 30, 2589-2599. | 3.2 | 47 | | 112 | Immunoassays for cortisol using antibody-doped sol–gel silica. Journal of Materials Chemistry, 2004, 14, 2311-2316. | 6.7 | 43 | | 113 | Vanadium oxide aerogels: Nanostructured materials for enhanced energy storage. Comptes Rendus Chimie, 2010, 13, 130-141. | 0.2 | 42 | | 114 | A three-dimensional human model of the fibroblast activation that accompanies bronchopulmonary dysplasia identifies Notch-mediated pathophysiology. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L889-L898. | 1.3 | 42 | | 115 | Wafer-Scale Black Arsenic–Phosphorus Thin-Film Synthesis Validated with Density Functional Perturbation Theory Predictions. ACS Applied Nano Materials, 2018, 1, 4737-4745. | 2.4 | 42 | | 116 | Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9176-9189. | 3.2 | 42 | | 117 | Controlling the Spontaneous Precipitation of Silver Nanoparticles in Sol-Gel Materials. Journal of Sol-Gel Science and Technology, 2000, 19, 249-252. | 1.1 | 41 | | 118 | Microtubuleâ€Based Gold Nanowires and Nanowire Arrays. Small, 2008, 4, 1507-1515. | 5.2 | 41 | | 119 | Simulations and Interpretation of Three-Electrode Cyclic Voltammograms of Pseudocapacitive Electrodes. Electrochimica Acta, 2016, 211, 420-429. | 2.6 | 40 | | 120 | Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes. Journal of Power Sources, 2018, 374, 257-268. | 4.0 | 40 | | 121 | 3D Architectures for Batteries and Electrodes. Advanced Energy Materials, 2020, 10, 2002457. | 10.2 | 40 | | 122 | Electrochemical Properties of Vanadium Oxide Aerogels and Aerogel Nanocomposites. Journal of Sol-Gel Science and Technology, 2003, 26, 641-644. | 1.1 | 38 | | 123 | Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis. Energy and Environmental Science, 2008, 1, 484. | 15.6 | 37 | | 124 | 3D Architectured Anodes for Lithium″on Microbatteries with Large Areal Capacity. Energy Technology, 2014, 2, 362-369. | 1.8 | 37 | | 125 | Effects of Temperature and Strain Rate on the Plastic Deformation of Fully Dense Polycrystalline Y1Ba2Cu3O7-x Superconductor. Journal of the American Ceramic Society, 1989, 72, 137-139. | 1.9 | 36 | | 126 | Suppression of Electrochemically Driven Phase Transitions in Nanostructured MoS ₂ Pseudocapacitors Probed Using <i>Operando</i> X-ray Diffraction. ACS Nano, 2019, 13, 1223-1231. | 7.3 | 36 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 127 | High-Performance Solid-State Lithium-Ion Battery with Mixed 2D and 3D Electrodes. ACS Applied Energy Materials, 2020, 3, 8402-8409. | 2.5 | 35 | | 128 | Low-potential lithium-ion reactivity of vanadium oxide aerogels. Electrochimica Acta, 2013, 88, 530-535. | 2.6 | 34 | | 129 | Nanoscale, conformal polysiloxane thin film electrolytes for three-dimensional battery architectures. Materials Horizons, 2015, 2, 309-314. | 6.4 | 34 | | 130 | Electrochemical Modeling of GITT Measurements for Improved Solid-State Diffusion Coefficient Evaluation. ACS Applied Energy Materials, 2021, 4, 11460-11469. | 2.5 | 34 | | 131 | <i>In situ</i> monitoring of the electrochemically induced phase transition of thermodynamically metastable 1T-MoS ₂ at nanoscale. Nanoscale, 2020, 12, 9246-9254. | 2.8 | 33 | | 132 | Posttranslational modification of \hat{l}^2 -catenin is associated with pathogenic fibroblastic changes in bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L186-L195. | 1.3 | 32 | | 133 | Effect of Air Exposure on the Resistivity of Sodium Beta and Beta Aluminas. Journal of the American Ceramic Society, 1981, 64, 125-128. | 1.9 | 31 | | 134 | Porous Sol-Gel Silicates Containing Gold Particles as Matrices for Surface-EnhancedRaman Spectroscopy, Journal of Raman Spectroscopy, 1996, 27, 775-783. | 1.2 | 31 | | 135 | Passivating lithium electrodes with trimethylsilylacetylene. Solid State Ionics, 2001, 144, 295-299. | 1.3 | 30 | | 136 | Hexagonal to Lamellar Mesostructural Changes in Silicate Films Caused by Organic Additives. Chemistry of Materials, 2002, 14, 5153-5162. | 3.2 | 30 | | 137 | Correlated Polyhedral Rotations in the Absence of Polarons during Electrochemical Insertion of Lithium in ReO ₃ . ACS Energy Letters, 2018, 3, 2513-2519. | 8.8 | 30 | | 138 | NMR Relaxometry and Diffusometry Analysis of Dynamics in Ionic Liquids and Ionogels for Use in Lithium-Ion Batteries. Journal of Physical Chemistry B, 2020, 124, 6843-6856. | 1.2 | 30 | | 139 | Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule, 2021, 5, 2466-2478. | 11.7 | 30 | | 140 | Micromachining of mesoporous oxide films for microelectromechanical system structures. Journal of Materials Research, 2002, 17, 2121-2129. | 1.2 | 28 | | 141 | iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties. Macromolecular Rapid Communications, 2016, 37, 446-452. | 2.0 | 28 | | 142 | Frontiers in β″-Alumina Research. MRS Bulletin, 1989, 14, 22-30. | 1.7 | 27 | | 143 | Biomolecular materials based on sol-gel encapsulated proteins. Journal of Sol-Gel Science and Technology, 1994, 2, 791-795. | 1.1 | 27 | | 144 | Molecular Motion and Environmental Rigidity in the Framework and Ionic Interface Regions of Mesostructured Silica Thin Films. Journal of Physical Chemistry B, 2001, 105, 10335-10339. | 1.2 | 27 | | # | Article | IF | Citations | |-----|---|------|-----------| | 145 | A Group of Cyclic Siloxane and Silazane Polymer Films as Nanoscale Electrolytes for Microbattery Architectures. Macromolecules, 2015, 48, 5222-5229. | 2.2 | 27 | | 146 | High Surfaceâ€Area Ceria Aerogel. Journal of the American Ceramic Society, 2004, 87, 1442-1445. | 1.9 | 26 | | 147 | Effects of Constituent Materials on Heat Generation in Individual EDLC Electrodes. Journal of the Electrochemical Society, 2018, 165, A1547-A1557. | 1.3 | 26 | | 148 | Optical characteristics of SiO2 photonic band-gap crystal with ferroelectric perovskite oxide. Applied Physics Letters, 2002, 81, 4440-4442. | 1.5 | 24 | | 149 | TiMb <mml:math altimg="si117.svg" display="inline" id="d1e860" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow =""></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> O <mml:math <="" display="inline" id="d1e868" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>4.0</td><td>24</td></mml:math> | 4.0 | 24 | | 150 | Characterization of Pore Size Distribution by Infrared Scattering in Highly Dense ZnS. Journal of the American Ceramic Society, 1993, 76, 2086-2092. | 1.9 | 23 | | 151 | Designing the Charge Storage Properties of Liâ€Exchanged Sodium Vanadium Fluorophosphate for Powering Implantable Biomedical Devices. Advanced Energy Materials, 2019, 9, 1900226. | 10.2 | 23 | | 152 | Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 2672-2686. | 3.2 | 23 | | 153 | Growth Temperature and Electrochemical Performance in Vapor-Deposited Poly(3,4-ethylenedioxythiophene) Thin Films for High-Rate Electrochemical Energy Storage. ACS Applied Energy Materials, 2018, 1, 7093-7105. | 2.5 | 22 | | 154 | Enzymatic activity of oxalate oxidase and kinetic measurements by optical methods in transparent sol-gel monoliths. Journal of Sol-Gel Science and Technology, 1996, 7, 117-121. | 1.1 | 21 | | 155 | Encapsulation of the ferritin protein in sol-gel derived silica glasses. Journal of Sol-Gel Science and Technology, 1996, 7, 109-116. | 1.1 | 20 | | 156 | Synthesis and Characterization of Vacancy-Doped Neodymium Telluride for Thermoelectric Applications. Chemistry of Materials, 2019, 31, 4460-4468. | 3.2 | 20 | | 157 | Thermal signature of ion intercalation and surface redox reactions mechanisms in model pseudocapacitive electrodes. Electrochimica Acta, 2019, 307, 512-524. | 2.6 | 20 | | 158 | Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes. Physical Review Materials, 2018, 2, . | 0.9 | 20 | | 159 | Panoramic View of Electrochemical Pseudocapacitor and Organic Solar Cell Research in Molecularly Engineered Energy Materials (MEEM). Journal of Physical Chemistry C, 2014, 118, 19505-19523. | 1.5 | 19 | | 160 | Synthesis and Properties of a Photopatternable Lithiumâ€lon Conducting Solid Electrolyte. Advanced Materials, 2018, 30, 1703772. | 11.1 | 19 | | 161 | Inâ€Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows. ChemSusChem, 2020, 13, 1013-1026. | 3.6 | 19 | | 162 | Nanoconfined Proteins and Enzymes: Solâ€"Gel-Based Biomolecular Materials. ACS Symposium Series, 1996, , 351-365. | 0.5 | 18 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 163 | Mechanical properties of aerogel-like thin films used for MEMS. Journal of Micromechanics and Microengineering, 2004, 14, 681-686. | 1.5 | 18 | | 164 | Sol–gel encapsulated lithium polysulfide catholyte and its application in lithium–sulfur batteries. Materials Horizons, 2016, 3, 137-144. | 6.4 | 18 | | 165 | A Perspective on interfacial engineering of lithium metal anodes and beyond. Applied Physics Letters, 2020, 117, . | 1.5 | 18 | | 166 | Strategies for Spatially Separating Molecules in Mesostructured Sol-Gel Silicate Films. Journal of Sol-Gel Science and Technology, 2003, 26, 571-575. | 1.1 | 17 | | 167 | Ensemble multivariate analysis to improve identification of articular cartilage disease in noisy Raman spectra. Journal of Biophotonics, 2015, 8, 555-566. | 1.1 | 17 | | 168 | Silica sol–gel chemistry: creating materials and architectures for energy generation and storage. Journal of Sol-Gel Science and Technology, 2014, 70, 203-215. | 1.1 | 16 | | 169 | Irreversibility at macromolecular scales in the flake graphite of the lithium-ion battery anode. Journal of Power Sources, 2019, 436, 226841. | 4.0 | 16 | | 170 | Thick Transparent Nanoparticle-Based Mesoporous Silica Monolithic Slabs for Thermally Insulating Window Materials. ACS Applied Nano Materials, 2019, 2, 4547-4555. | 2.4 | 16 | | 171 | Effect of temperature on irreversible and reversible heat generation rates in ionic liquid-based electric double layer capacitors. Electrochimica Acta, 2020, 338, 135802. | 2.6 | 16 | | 172 | Heat generation in electric double layer capacitors with neat and diluted ionic liquid electrolytes under large potential window between 5 and 80°C. Journal of Power Sources, 2021, 488, 229368. | 4.0 | 16 | | 173 | Elastic and plastic mechanical properties of nanoparticle-based silica aerogels and xerogels.
Microporous and Mesoporous Materials, 2022, 330, 111569. | 2.2 | 15 | | 174 | Development of a Threeâ€Dimensional Bioengineering Technology to Generate Lung Tissue for Personalized Disease Modeling. Current Protocols in Stem Cell Biology, 2018, 46, e56. | 3.0 | 14 | | 175 | Solid-State Phase Equilibria in the ZnS-Ga2S3 System. Journal of the American Ceramic Society, 1990, 73, 1544-1547. | 1.9 | 13 | | 176 | Solution processing approaches for solid electrolytes and electrode materials. Journal of Materials Research, 1998, 13, 866-874. | 1.2 | 13 | | 177 | Electrochemical Characterization of Na-Ion Charge-Storage Properties for Nanostructured NaTi ₂ (PO ₄) ₃ as a Function of Crystalline Order. Journal of the Electrochemical Society, 2017, 164, A2124-A2130. | 1.3 | 13 | | 178 | Role of Electronic Structure in Li Ordering and Chemical Strain in the Fast Charging Wadsley–Roth Phase PNb ₉ O ₂₅ . Chemistry of Materials, 2021, 33, 7755-7766. | 3.2 | 13 | | 179 | High-Rate Lithium Cycling and Structure Evolution in Mo ₄ O ₁₁ . Chemistry of Materials, 2022, 34, 4122-4133. | 3.2 | 13 | | 180 | Understanding the Electrochemical Performance of FeS ₂ Conversion Cathodes. ACS Applied Materials & Diterfaces, 2022, 14, 26604-26611. | 4.0 | 13 | | # | Article | IF | Citations | |-----|---|-----|-----------| | 181 | A high-energy-density quasi-solid-state carbon nanotube electrochemical double-layer capacitor with ionogel electrolyte. Translational Materials Research, 2015, 2, 015001. | 1.2 | 12 | | 182 | Microscale 2.5D Batteries. Journal of the Electrochemical Society, 2017, 164, A2500-A2503. | 1.3 | 12 | | 183 | Electrochemical and Spectroscopic Analysis of the Ionogel–Electrode Interface. ACS Applied Materials & Description (1998) (19 | 4.0 | 12 | | 184 | Three-dimensional microbatteries for MEMS/NEMS technology. , 2010, , . | | 11 | | 185 | Effect of surface hydroxyl groups on heat capacity of mesoporous silica. Applied Physics Letters, 2018, 112, . | 1.5 | 11 | | 186 | Conformal Ultrathin Film Metal–Organic Framework Analogues: Characterization of Growth, Porosity, and Electronic Transport. Chemistry of Materials, 2019, 31, 8977-8986. | 3.2 | 11 | | 187 | Engineering mesoporous silica for superior optical and thermal properties. MRS Energy $\&$ Sustainability, 2020, 7, 1. | 1.3 | 11 | | 188 | Potentiometric entropy and operando calorimetric measurements reveal fast charging mechanisms in PNb <mml:math altimg="si211.svg" display="inline" id="d1e918" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow wml:mrow=""></mml:mrow></mml:msub><td>4.0</td><td>11</td></mml:math> | 4.0 | 11 | | 189 | Sources, 2022, 520, 230776. InÂsitu fluorescence probing of the chemical and structural changes during formation of hexagonal phase cetyltrimethylammonium bromide and lamellar phase CTAB/Poly(dodecylmethacrylate) sol–gel silica thin films. Journal of Sol-Gel Science and Technology, 2008, 47, 300-310. | 1.1 | 10 | | 190 | Understanding Stabilization in Nanoporous Intermetallic Alloy Anodes for Li-Ion Batteries Using <i>Operando</i> Transmission X-ray Microscopy. ACS Nano, 2020, 14, 14820-14830. | 7.3 | 9 | | 191 | Mechanistic Insight and Local Structure Evolution of NiPS ₃ upon Electrochemical Lithiation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3980-3990. | 4.0 | 9 | | 192 | Inorganic Sol—Gel Glasses as Matrices for Nonlinear Optical Materials. ACS Symposium Series, 1991, , 541-552. | 0.5 | 8 | | 193 | A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€lon Li + Solid Electrolyte.
Angewandte Chemie, 2018, 130, 16925-16929. | 1.6 | 8 | | 194 | Bio-hybrid materials for immunoassay-based sensing of cortisol. Journal of Sol-Gel Science and Technology, 2009, 50, 176-183. | 1.1 | 7 | | 195 | Plasma enhanced atomic layer deposition of thin film Li1+xMn2â^'xO4 for realization of all solid-state 3D lithium-ion microbatteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, . | 0.9 | 7 | | 196 | Siloxane-Modified, Silica-Based Ionogel as a Pseudosolid Electrolyte for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 154-163. | 2.5 | 7 | | 197 | In Situ UV–Vis Analysis of Polysulfide Shuttling in Ionic Liquid-Based Li-FeS ₂ Batteries.
Journal of Physical Chemistry C, 2022, 126, 5101-5111. | 1.5 | 7 | | 198 | Temperature-Dependent Reaction Pathways in FeS ₂ : Reversibility and the Electrochemical Formation of Fe ₃ S ₄ . Chemistry of Materials, 2022, 34, 5422-5432. | 3.2 | 7 | | # | Article | IF | Citations | |-----|---|------|-----------| | 199 | Fe-Substituted Sodium $\hat{1}^2\hat{a}\in 3$ -Al $<$ sub $>2sub>0<sub>3sub> as a High-Rate Na-Ion Electrode. Chemistry of Materials, 2021, 33, 6136-6145.$ | 3.2 | 6 | | 200 | Transparent silica aerogel slabs synthesized from nanoparticle colloidal suspensions at near ambient conditions on omniphobic liquid substrates. Journal of Colloid and Interface Science, 2022, 606, 884-897. | 5.0 | 6 | | 201 | Synthesis and Crystallization of Atomic Layer Deposition β-Eucryptite LiAlSiO ₄ Thin-Film Solid Electrolytes. ACS Applied Materials & Solid Electrolytes. ACS Applied Materials & Solid Electrolytes. | 4.0 | 6 | | 202 | Encapsulation and reactivity of the enzyme oxalate oxidase in a sol-gel derived glass. Journal of Sol-Gel Science and Technology, 1994, 2, 827-829. | 1.1 | 5 | | 203 | Zinc-air microbattery with electrode array of zinc microposts. , 2007, , . | | 5 | | 204 | A spatially and chemically defined platform for the uniform growth of human pluripotent stem cells. Materials Science and Engineering C, 2013, 33, 234-241. | 3.8 | 5 | | 205 | Energy Storage: Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage (Adv. Mater. 20/2017). Advanced Materials, 2017, 29, . | 11.1 | 5 | | 206 | The Processing and Characterization of Hybrid Silica-Based Xerogel Films. Materials Research Society Symposia Proceedings, 1997, 476, 105. | 0.1 | 4 | | 207 | Highâ€temperature structural stability of ceriaâ€based inverse opals. Journal of the American Ceramic Society, 2017, 100, 2659-2668. | 1.9 | 4 | | 208 | Probing ion current in solid-electrolytes at the meso- and nanoscale. Faraday Discussions, 2018, 210, 55-67. | 1.6 | 4 | | 209 | Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research, 2021, 36, 797-811. | 1.2 | 4 | | 210 | Reconfigurable Hydrophobic/Hydrophilic Surfaces Based on Self-Assembled Monolayers. Materials Research Society Symposia Proceedings, 2003, 774, 581. | 0.1 | 4 | | 211 | Thermodynamics-driven interfacial engineering of alloy-type anode materials. Cell Reports Physical Science, 2022, 3, 100694. | 2.8 | 4 | | 212 | Quadrupling the stored charge by extending the accessible density of states. CheM, 2022, 8, 2410-2418. | 5.8 | 4 | | 213 | A biocompatible open system Na-doped IrO _{<i>x</i>} (OH) _{<i>y</i>} energy storage device with enhanced charge storage properties and long lifetime. Journal of Materials Chemistry A, 2022, 10, 14479-14487. | 5.2 | 4 | | 214 | Photochemical Enzyme Co-Factor Regeneration: Towards Continuous Glutamate Monitoring with a Sol-Gel Optical Biosensor. Materials Research Society Symposia Proceedings, 2002, 723, 621. | 0.1 | 3 | | 215 | Electrochemical and physical chemical properties of sp2 carbon microrods. Carbon, 2006, 44, 1718-1724. | 5.4 | 3 | | 216 | Protein Adsorption Alters Hydrophobic Surfaces Used for Suspension Culture of Pluripotent Stem Cells. Journal of Physical Chemistry Letters, 2015, 6, 388-393. | 2.1 | 3 | | # | Article | IF | Citations | |-----|--|------|-----------| | 217 | Carbon-ionogel supercapacitors for integrated microelectronics. Nanotechnology, 2016, 27, 035204. | 1.3 | 3 | | 218 | Photopatternable Porous Separators for Microâ€Electrochemical Energy Storage Systems. Advanced Materials, 2022, 34, e2108792. | 11.1 | 3 | | 219 | Mesoporous MoO2 thin films for high rate Li+ storage: Effect of crystallinity and porous structure. Solid State Sciences, 2022, 129, 106890. | 1.5 | 3 | | 220 | Room-Temperature Electrochemical Fluoride (De)insertion into CsMnFeF ₆ . ACS Energy Letters, 2022, 7, 2340-2348. | 8.8 | 3 | | 221 | Fabrication of Flexible Li-ion Battery Electrodes Using "Battlets" Approach with Ionic Liquid Electrolyte for Powering Wearable Devices. , 2022, , . | | 3 | | 222 | Rigidochromism as a Probe of Gelation, Aging, and Drying in SOL-GEL Derived Ormosils. Materials Research Society Symposia Proceedings, 1992, 271, 651. | 0.1 | 2 | | 223 | Sol-Gel Optical Sensors for Glutamate. Materials Research Society Symposia Proceedings, 2000, 662, 1. | 0.1 | 2 | | 224 | Synthesis and Thermoelectric Properties of Doped Yb ₁₄ MnSb _{11-x} Bi _x Zintls. Materials Research Society Symposia Proceedings, 2010, 1267, 1. | 0.1 | 2 | | 225 | Cryogenic Milling Method to Fabricate Nanostructured Anodes. ACS Applied Energy Materials, 2020, 3, 11285-11292. | 2.5 | 2 | | 226 | Investigating the Perovskite Ag1-3xLaxNbO3 as a High-Rate Negative Electrode for Li-Ion Batteries. Frontiers in Chemistry, 2022, 10, 873783. | 1.8 | 2 | | 227 | Preparation of Mesoporous Oxides for Mems Structures. Materials Research Society Symposia Proceedings, 2000, 657, 731. | 0.1 | 1 | | 228 | Nanoscale Assembly of Nanowires Templated by Microtubules. Materials Research Society Symposia Proceedings, 2005, 901, 1. | 0.1 | 1 | | 229 | Scaled carbon-ionogel supercapacitors for electronic circuits. , 2014, , . | | 1 | | 230 | Vanadium Oxide Aerogels: Enhanced Energy Storage in Nanostructured Materials. Nanostructure Science and Technology, 2009, , 185-199. | 0.1 | 1 | | 231 | Encapsulation and Reactivity of Proteins in Optically Transparent Porous Silicate Glasses Prepared by the Sol-Gel Method. Materials Research Society Symposia Proceedings, 1992, 277, 99. | 0.1 | 0 | | 232 | Optical Sol-Gel Materials Based on Binding and Catalysis by Biomolecules. Materials Research Society Symposia Proceedings, 1994, 346, 1017. | 0.1 | 0 | | 233 | Measuring the Dielectric Properties of Nanostructures using Optical Reflection and Transmission:
Bismuth Nanowires in Porous Alumina. Materials Research Society Symposia Proceedings, 1999, 581,
623. | 0.1 | 0 | | 234 | Luminescence Properties of Rare-Earth Ions in Organic-Inorganic Hybrid Mesostructured Thin Films. Materials Research Society Symposia Proceedings, 2002, 726, 1. | 0.1 | 0 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 235 | Bio-Hybrid Materials for Immunoassay-Based Sensing. Materials Research Society Symposia
Proceedings, 2006, 915, 1. | 0.1 | O | | 236 | Three-dimensional Batteries. Materials and Energy, 2015, , 701-730. | 2.5 | 0 |