Ole SkÃ,tt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201951/publications.pdf Version: 2024-02-01

Οι ε ςνλ ττ

#	Article	IF	CITATIONS
1	Plasmin in Nephrotic Urine Activates the Epithelial Sodium Channel. Journal of the American Society of Nephrology: JASN, 2009, 20, 299-310.	3.0	236
2	Differential Expression of T- and L-Type Voltage-Dependent Calcium Channels in Renal Resistance Vessels. Circulation Research, 2001, 89, 630-638.	2.0	180
3	Abolished tubuloglomerular feedback and increased plasma renin in adenosine A ₁ receptor-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1362-R1367.	0.9	140
4	Chloride Regulates Afferent Arteriolar Contraction in Response to Depolarization. Hypertension, 1998, 32, 1066-1070.	1.3	125
5	Vascular Smooth Muscle Cells Express the α _{1A} Subunit of a P-/Q-Type Voltage-Dependent Ca ²⁺ Channel, and It Is Functionally Important in Renal Afferent Arterioles. Circulation Research, 2000, 87, 896-902.	2.0	82
6	Control of Renin Secretion From Rat Juxtaglomerular Cells by cAMP-Specific Phosphodiesterases. Circulation Research, 2002, 90, 996-1003.	2.0	76
7	Rapid actions of aldosterone in vascular health and disease—friend or foe?. , 2006, 111, 495-507.		72
8	Contribution of the basolateral isoform of the Na-K-2Clâ^' cotransporter (NKCC1/BSC2) to renin secretion. American Journal of Physiology - Renal Physiology, 2005, 289, F1185-F1192.	1.3	65
9	Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1733-R1741.	0.9	64
10	Localization of prostaglandin E ₂ EP2 and EP4 receptors in the rat kidney. American Journal of Physiology - Renal Physiology, 2001, 280, F1001-F1009.	1.3	62
11	Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 25-37.	1.3	57
12	Direct Demonstration of Exocytosis and Endocytosis in Single Mouse Juxtaglomerular Cells. Circulation Research, 1999, 84, 929-936.	2.0	50
13	The α _{1G} -subunit of a voltage-dependent Ca ²⁺ channel is localized in rat distal nephron and collecting duct. American Journal of Physiology - Renal Physiology, 2000, 279, F997-F1005.	1.3	47
14	Molecular and Functional Identification of Cyclic AMP-Sensitive BK Ca Potassium Channels (ZERO) Tj ETQq0 0 C Circulation Research, 2003, 93, 213-220.) rgBT /Ove 2.0	erlock 10 Tf 50 41
15	Cyclooxygenase-2 contributes to elevated renin in the early postnatal period in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1179-R1189.	0.9	39
16	Hydronephrosis causes salt-sensitive hypertension in rats. Journal of Hypertension, 2006, 24, 1437-1443.	0.3	36
17	Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature. Hypertension, 2011, 58, 464-470.	1.3	35
18	Coexpression of Voltage-Dependent Calcium Channels Ca v 1.2, 2.1a, and 2.1b in Vascular Myocytes. Hypertension, 2006, 47, 735-741.	1.3	33

Ole SkÃ,tt

#	Article	lF	CITATIONS
19	Losartan treatment normalizes renal sodium and water handling in rats with mild congestive heart failure. American Journal of Physiology - Renal Physiology, 2002, 282, F307-F315.	1.3	29
20	Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. American Journal of Physiology - Renal Physiology, 2006, 291, F812-F822.	1.3	29
21	Body sodium and volume homeostasis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R14-R18.	0.9	28
22	Physiological regulation of epithelial sodium channel by proteolysis. Current Opinion in Nephrology and Hypertension, 2011, 20, 529-533.	1.0	28
23	Renal blood flow, early distal sodium, and plasma renin concentrations during osmotic diuresis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1268-R1276.	0.9	25
24	Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development. American Journal of Physiology - Renal Physiology, 2004, 286, F26-F37.	1.3	22
25	Hypotonicity-Induced Renin Exocytosis from Juxtaglomerular Cells Requires Aquaporin-1 and Cyclooxygenase-2. Journal of the American Society of Nephrology: JASN, 2009, 20, 2154-2161.	3.0	22
26	Effects of renal denervation on tubular sodium handling in rats with CBL-induced liver cirrhosis. American Journal of Physiology - Renal Physiology, 2003, 284, F555-F563.	1.3	21
27	Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells. Kidney International, 2010, 77, 110-117.	2.6	21
28	Expression of adrenomedullin in hypoxic and ischemic rat kidneys and human kidneys with arterial stenosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R942-R951.	0.9	18
29	Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia. Journal of Hypertension, 2009, 27, 829-837.	0.3	18
30	High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice. Journal of Hypertension, 2009, 27, 41-47.	0.3	17
31	Giant renin secretory granules in beige mouse renal afferent arterioles. Cell and Tissue Research, 1997, 288, 399-406.	1.5	16
32	Tissue expression and plasma levels of adrenomedullin in renal cancer patients. Clinical Science, 2006, 111, 61-70.	1.8	14
33	Renin. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R937-R939.	0.9	13
34	Blood pressure is the major driving force for plaque formation in aortic-constricted ApoEâ^'/â^' mice. Journal of Hypertension, 2006, 24, 2001-2008.	0.3	12
35	Postnatal adrenalectomy impairs urinary concentrating ability by increased COX-2 and leads to renal medullary injury. American Journal of Physiology - Renal Physiology, 2007, 293, F780-F789.	1.3	10
36	Androgen-induced activation of 20-HETE production may contribute to gender differences in blood pressure regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1053-R1054.	0.9	9

Ole SkÃ,tt

#	Article	IF	CITATIONS
37	Electrophysiology of the renin-producing juxtaglomerular cells. Nephrology Dialysis Transplantation, 2005, 20, 1287-1290.	0.4	5
38	Rapid Nongenomic Effect of Aldosterone on Vasoconstriction. Hypertension, 2004, 43, e30; author reply e30.	1.3	4
39	In Vitro Studies on Renin Release. , 2003, 86, 341-350.		2
40	Consequences of eliminating adenosine A1receptors in mice. Drug Development Research, 2003, 58, 350-353.	1.4	0
41	Cyclosporine A increases renin release from single juxtaglomerular cells in a calciumâ€dependent manner. FASEB Journal, 2006, 20, A343.	0.2	Ο
42	Teaching acid/base physiology in the lab. FASEB Journal, 2007, 21, A214.	0.2	0
43	Renin release is differentially sensitive to clinically used calcineurin inhibitors. FASEB Journal, 2008, 22, 736.5.	0.2	0