
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible high-performance carbon nanotube integrated circuits. Nature Nanotechnology, 2011, 6, 156-161.	15.6	652
2	The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. Journal of Physics Condensed Matter, 2003, 15, S3011-S3035.	0.7	416
3	Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Letters, 2010, 10, 4349-4355.	4.5	384
4	A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161.	15.6	369
5	Multifunctional Free-Standing Single-Walled Carbon Nanotube Films. ACS Nano, 2011, 5, 3214-3221.	7.3	300
6	Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chemical Engineering Science, 2006, 61, 4393-4402.	1.9	272
7	Singleâ€Shell Carbonâ€Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 4535-4538.	7.2	268
8	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	11.1	246
9	Carbon nanotube films for ultrafast broadband technology. Optics Express, 2009, 17, 2358.	1.7	226
10	Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon, 2005, 43, 2251-2257.	5.4	219
11	Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Research, 2009, 2, 373-379.	5.8	208
12	Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Scientific Reports, 2013, 3, 1460.	1.6	175
13	Synthesis of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. Nano Letters, 2011, 11, 4352-4356.	4.5	174
14	Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoO _{<i>x</i>} as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 7982-7985.	6.6	150
15	An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chemical Physics Letters, 2006, 417, 179-184.	1.2	144
16	Mouldable all-carbon integrated circuits. Nature Communications, 2013, 4, 2302.	5.8	141
17	A novel aerosol method for single walled carbon nanotube synthesis. Chemical Physics Letters, 2005, 402, 227-232.	1.2	136
18	Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon, 2003, 41, 2711-2724.	5.4	118

#	Article	IF	CITATIONS
19	A novel method for metal oxide nanowire synthesis. Nanotechnology, 2009, 20, 165603.	1.3	110
20	A novel cement-based hybrid material. New Journal of Physics, 2009, 11, 023013.	1.2	108
21	Investigations of NanoBud formation. Chemical Physics Letters, 2007, 446, 109-114.	1.2	107
22	Hydrogenation, Purification, and Unzipping of Carbon Nanotubes by Reaction with Molecular Hydrogen: Road to Graphane Nanoribbons. ACS Nano, 2011, 5, 5132-5140.	7.3	106
23	A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Materialia, 2013, 61, 1862-1871.	3.8	92
24	SEM/AFM studies of cementitious binder modified by MWCNT and nano-sized Fe needles. Materials Characterization, 2009, 60, 735-740.	1.9	89
25	Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon, 2007, 45, 662-667.	5.4	86
26	Assembly of Singleâ€Walled Carbon Nanotubes on DNAâ€Origami Templates through Streptavidin–Biotin Interaction. Small, 2011, 7, 746-750.	5.2	86
27	Spatially Resolved Transport Properties of Pristine and Doped Single-Walled Carbon Nanotube Networks. Journal of Physical Chemistry C, 2013, 117, 13324-13330.	1.5	86
28	On-line detection of single-walled carbon nanotube formation during aerosol synthesis methods. Carbon, 2005, 43, 2066-2074.	5.4	83
29	Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 6346-6353.	7.3	82
30	Shot Noise with Interaction Effects in Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 99, 156803.	2.9	81
31	The Use of NH ₃ to Promote the Production of Large-Diameter Single-Walled Carbon Nanotubes with a Narrow (<i>n,m</i>) Distribution. Journal of the American Chemical Society, 2011, 133, 1224-1227.	6.6	81
32	Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films. Nanotechnology, 2016, 27, 235403.	1.3	79
33	Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon, 2010, 48, 380-388.	5.4	78
34	Tailoring the diameter of single-walled carbon nanotubes for optical applications. Nano Research, 2011, 4, 807-815.	5.8	76
35	Transparent and conductive hybrid graphene/carbon nanotube films. Carbon, 2016, 100, 501-507.	5.4	76
36	Effect of Carbon Nanotube Aqueous Dispersion Quality on Mechanical Properties of Cement Composite. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	75

#	Article	IF	CITATIONS
37	A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics. ACS Applied Materials & Interfaces, 2018, 10, 28069-28075.	4.0	75
38	ZnO Nanostructures Application in Electrochemistry: Influence of Morphology. Journal of Physical Chemistry C, 2021, 125, 1472-1482.	1.5	71
39	Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. International Journal of Hydrogen Energy, 2012, 37, 3415-3424.	3.8	69
40	Highly conductive and transparent films of HAuCl4-doped single-walled carbon nanotubes for flexible applications. Carbon, 2018, 130, 448-457.	5.4	68
41	Controlled Hybrid Nanostructures through Proteinâ€Mediated Noncovalent Functionalization of Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 6446-6449.	7.2	67
42	Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. Journal of Materials Chemistry A, 2014, 2, 11311-11318.	5.2	66
43	Maghemite nanoparticles decorated on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 5216-5222.	5.2	65
44	Selective growth of SWNTs on partially reduced monometallic cobalt catalyst. Chemical Communications, 2011, 47, 1219-1221.	2.2	64
45	Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction. Chemistry of Materials, 2012, 24, 1796-1801.	3.2	63
46	In Situ Study of Noncatalytic Metal Oxide Nanowire Growth. Nano Letters, 2014, 14, 5810-5813.	4.5	63
47	Analysis of the Size Distribution of Single-Walled Carbon Nanotubes Using Optical Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 1143-1148.	2.1	62
48	High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental, 2014, 158-159, 233-241.	10.8	62
49	Nanoparticle Formation via Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Hydrogen and Water. Journal of Physical Chemistry B, 2001, 105, 11067-11075.	1.2	60
50	Ionic Liquid Gated Carbon Nanotube Saturable Absorber for Switchable Pulse Generation. Nano Letters, 2019, 19, 5836-5843.	4.5	60
51	A New Thermophoretic Precipitator for Collection of Nanometer-Sized Aerosol Particles. Aerosol Science and Technology, 2005, 39, 1064-1071.	1.5	59
52	Studies on Mechanism of Single-Walled Carbon Nanotube Formation. Journal of Nanoscience and Nanotechnology, 2006, 6, 1233-1246.	0.9	59
53	Effect of carbon nanotube network morphology on thin film transistor performance. Nano Research, 2012, 5, 307-319.	5.8	59
54	Hybrid carbon source for single-walled carbon nanotube synthesis by aerosol CVD method. Carbon, 2014, 78, 130-136.	5.4	58

#	Article	IF	CITATIONS
55	Aerosol feeding of catalyst precursor for CNT synthesis and highly conductive and transparent film fabrication. Chemical Engineering Journal, 2014, 255, 134-140.	6.6	57
56	Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Applied Physics Letters, 2015, 107, .	1.5	57
57	Carbon nanotube synthesis from alcohols by a novel aerosol method. Journal of Nanoparticle Research, 2006, 8, 465-475.	0.8	55
58	Growth of single-walled carbon nanotubes with controlled diameters and lengths by an aerosol method. Carbon, 2011, 49, 4636-4643.	5.4	55
59	Photon-Drag Effect in Single-Walled Carbon Nanotube Films. Nano Letters, 2012, 12, 77-83.	4.5	55
60	Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Applied Physics Letters, 2015, 107, .	1.5	54
61	Machine Learning for Tailoring Optoelectronic Properties of Single-Walled Carbon Nanotube Films. Journal of Physical Chemistry Letters, 2019, 10, 6962-6966.	2.1	54
62	Mechanically Tunable Single-Walled Carbon Nanotube Films as a Universal Material for Transparent and Stretchable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 27327-27334.	4.0	52
63	Synthesis of Carbon Nanotubes and Nanofibers on Silica and Cement Matrix Materials. Journal of Nanomaterials, 2009, 2009, 1-4.	1.5	50
64	Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1831.	1.3	50
65	Low temperature growth of SWNTs on a nickel catalyst by thermal chemical vapor deposition. Nano Research, 2011, 4, 334-342.	5.8	50
66	Carbon nanotube thin film transistors based on aerosol methods. Nanotechnology, 2009, 20, 085201.	1.3	45
67	Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Advanced Healthcare Materials, 2020, 9, e2000377.	3.9	44
68	Integration of single-walled carbon nanotubes into polymer films by thermo-compression. Chemical Engineering Journal, 2008, 136, 409-413.	6.6	43
69	Nitrogen-Doped Single-Walled Carbon Nanotube Thin Films Exhibiting Anomalous Sheet Resistances. Chemistry of Materials, 2011, 23, 2201-2208.	3.2	43
70	Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film. Optics Express, 2016, 24, 28768.	1.7	43
71	Direct Synthesis of Carbon Nanofibers on Cement Particles. Transportation Research Record, 2010, 2142, 96-101.	1.0	41
72	Chiralityâ€Dependent Reactivity of Individual Singleâ€Walled Carbon Nanotubes. Small, 2013, 9, 1379-1386.	5.2	41

#	Article	IF	CITATIONS
73	Metallization of single-wall carbon nanotube thin films induced by gas phase iodination. Carbon, 2015, 94, 768-774.	5.4	41
74	All-nanotube stretchable supercapacitor with low equivalent series resistance. Scientific Reports, 2017, 7, 17449.	1.6	41
75	CO dissociation and CO+O reactions on a nanosized iron cluster. Nano Research, 2009, 2, 660-670.	5.8	40
76	Controlled Synthesis of Single-Walled Carbon Nanotubes in an Aerosol Reactor. Journal of Physical Chemistry C, 2011, 115, 7309-7318.	1.5	40
77	Synthesis of ZnO tetrapods for flexible and transparent UV sensors. Nanotechnology, 2012, 23, 095502.	1.3	40
78	Express determination of thickness and dielectric function of single-walled carbon nanotube films. Applied Physics Letters, 2020, 116, .	1.5	40
79	Combined Raman Spectroscopy and Transmission Electron Microscopy Studies of a NanoBud Structure. Journal of the American Chemical Society, 2008, 130, 7188-7189.	6.6	39
80	Mechanistic investigation of ZnO nanowire growth. Applied Physics Letters, 2009, 95, 183114.	1.5	38
81	Giant Negative Terahertz Photoconductivity in Controllably Doped Carbon Nanotube Networks. ACS Photonics, 2019, 6, 1058-1066.	3.2	38
82	Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon, 2020, 161, 712-717.	5.4	38
83	Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics, 2012, 112, .	1.1	37
84	Stretchable and transparent supercapacitors based on aerosol synthesized single-walled carbon nanotube films. RSC Advances, 2016, 6, 93915-93921.	1.7	37
85	Single-walled carbon nanotube networks for ethanol vapor sensing applications. Nano Research, 2013, 6, 77-86.	5.8	36
86	Enhanced performance of a silicon microfabricated direct methanol fuel cell with PtRu catalysts supported on few-walled carbon nanotubes. Energy, 2014, 65, 612-620.	4.5	36
87	Optical properties of singleâ€walled carbon nanotubes filled with CuCl by gasâ€phase technique. Physica Status Solidi (B): Basic Research, 2014, 251, 2466-2470.	0.7	36
88	Artificial neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon, 2019, 153, 100-103.	5.4	36
89	Dry Functionalization and Doping of Single-Walled Carbon Nanotubes by Ozone. Journal of Physical Chemistry C, 2015, 119, 27821-27828.	1.5	34
90	Highly efficient thermophones based on freestanding single-walled carbon nanotube films. Nanoscale Horizons, 2019, 4, 1158-1163.	4.1	32

#	Article	IF	CITATIONS
91	Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction―Unit. ACS Applied Materials & Interfaces, 2020, 12, 56135-56150.	4.0	32
92	Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit. Advanced Science, 2022, 9, .	5.6	32
93	Quasi-2D Co ₃ O ₄ nanoflakes as an efficient gas sensor <i>versus</i> alcohol VOCs. Journal of Materials Chemistry A, 2020, 8, 7214-7228.	5.2	31
94	Direct synthesis of carbon nanofibers on the surface of copper powder. Carbon, 2010, 48, 4559-4562.	5.4	30
95	In Situ TEM Observation of MgO Nanorod Growth. Crystal Growth and Design, 2010, 10, 414-417.	1.4	30
96	Nonlinear optical properties of carbon nanotube hybrids in polymer dispersions. Materials Chemistry and Physics, 2012, 133, 992-997.	2.0	30
97	A Novel Method for Continuous Synthesis of ZnO Tetrapods. Journal of Physical Chemistry C, 2015, 119, 16366-16373.	1.5	30
98	Standardized Procedures Important for Improving Single-Component Ceramic Fuel Cell Technology. ACS Energy Letters, 2017, 2, 2752-2755.	8.8	30
99	A spark discharge generator for scalable aerosol CVD synthesis of single-walled carbon nanotubes with tailored characteristics. Chemical Engineering Journal, 2019, 372, 462-470.	6.6	30
100	<i>In vitro</i> toxicity of carbon nanotubes: a systematic review. RSC Advances, 2022, 12, 16235-16256.	1.7	30
101	Holey single-walled carbon nanotubes for ultra-fast broadband bolometers. Nanoscale, 2018, 10, 18665-18671.	2.8	29
102	Rational design of highly efficient flexible and transparent p-type composite electrode based on single-walled carbon nanotubes. Nano Energy, 2020, 67, 104183.	8.2	29
103	Coronene Encapsulation in Singleâ€Walled Carbon Nanotubes: Stacked Columns, Peapods, and Nanoribbons. ChemPhysChem, 2014, 15, 1660-1665.	1.0	28
104	Bismuth-doped fiber laser at 132 μm mode-locked by single-walled carbon nanotubes. Optics Express, 2018, 26, 23911.	1.7	28
105	Incorporation of Vanadium(V) Oxide in Hybrid Hole Transport Layer Enables Long-term Operational Stability of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5563-5568.	2.1	28
106	Detecting cooking state of grilled chicken by electronic nose and computer vision techniques. Food Chemistry, 2021, 345, 128747.	4.2	28
107	Nanoparticle Synthesis by Copper (II) Acetylacetonate Vapor Decomposition in the Presence of Oxygen. Aerosol Science and Technology, 2002, 36, 899-911.	1.5	27
108	Flexible optically transparent single-walled carbon nanotube electrodes for UV–Vis absorption spectroelectrochemistry. Electrochemistry Communications, 2009, 11, 442-445.	2.3	27

#	Article	IF	CITATIONS
109	Modified silicone rubber for fabrication and contacting of flexible suspended membranes of n-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. Journal of Materials Chemistry C, 2020, 8, 3764-3772.	2.7	27
110	CVD synthesis and radial deformations of large diameter single-walled CNTs. Current Applied Physics, 2009, 9, 301-305.	1.1	26
111	Gas-Phase Synthesis and Control of Structure and Thickness of Graphene Layers on Copper Substrates. Metal Science and Heat Treatment, 2016, 58, 40-45.	0.2	26
112	Charging of Aerosol Products during Ferrocene Vapor Decomposition in N ₂ and CO Atmospheres. Journal of Physical Chemistry C, 2008, 112, 5762-5769.	1.5	24
113	Flexible metal-free counter electrode for dye solar cells based on conductive polymer and carbon nanotubes. Journal of Electroanalytical Chemistry, 2012, 683, 70-74.	1.9	24
114	Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes. Journal Physics D: Applied Physics, 2018, 51, 014003.	1.3	24
115	Flexible self-powered piezo-supercapacitor system for wearable electronics. Nanotechnology, 2018, 29, 325501.	1.3	24
116	Comparison of dye solar cell counter electrodes based on different carbon nanostructures. Thin Solid Films, 2011, 519, 8125-8134.	0.8	23
117	Synthesis of Carbon Nanofibers on the Surface of Particles of Aluminum Powder. Metal Science and Heat Treatment, 2014, 55, 564-568.	0.2	23
118	A few-layered graphene on alumina nanofibers for electrochemical energy conversion. Carbon, 2015, 88, 157-164.	5.4	23
119	Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo‣ayered Double Hydroxide and Nitrogenâ€Đoped Graphene Using a Simple Fabrication Method. Energy Technology, 2019, 7, 1801002.	1.8	23
120	Incremental Variation in the Number of Carbon Nanotube Walls with Growth Temperature. Journal of Physical Chemistry C, 2009, 113, 2212-2218.	1.5	22
121	Temperature Dependent Raman Spectra of Carbon Nanobuds. Journal of Physical Chemistry C, 2010, 114, 13540-13545.	1.5	22
122	Atomic Layer Deposition of Aluminum Oxide Films for Carbon Nanotube Network Transistor Passivation. Journal of Nanoscience and Nanotechnology, 2011, 11, 8818-8825.	0.9	22
123	Application of WSe ₂ Nanoparticles Synthesized by Chemical Vapor Condensation Method for Li-Ion Battery Anodes. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1429-1437.	1.4	22
124	A novel straightforward wet pulling technique to fabricate carbon nanotube fibers. Carbon, 2019, 150, 69-75.	5.4	22
125	The Ti wire functionalized with inherent TiO2 nanotubes by anodization as one-electrode gas sensor: A proof-of-concept study. Sensors and Actuators B: Chemical, 2020, 306, 127615.	4.0	22
126	Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon, 2021, 173, 245-252.	5.4	22

#	Article	IF	CITATIONS
127	Robust Bessel-function-based method for determination of the(n,m)indices of single-walled carbon nanotubes by electron diffraction. Physical Review B, 2006, 74, .	1.1	21
128	High-yield of memory elements from carbon nanotube field-effect transistors with atomic layer deposited gate dielectric. New Journal of Physics, 2008, 10, 103019.	1.2	21
129	Lithography-free fabrication of carbon nanotube network transistors. Nanotechnology, 2011, 22, 065303.	1.3	21
130	Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator. Electrochimica Acta, 2013, 111, 206-209.	2.6	21
131	Hydrogen-Driven Cage Unzipping of C ₆₀ into Nano-Graphenes. Journal of Physical Chemistry C, 2014, 118, 6504-6513.	1.5	21
132	Residence time effect on single-walled carbon nanotube synthesis in an aerosol CVD reactor. Chemical Engineering Journal, 2021, 420, 129869.	6.6	21
133	Singleâ€Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector. Advanced Functional Materials, 2022, 32, .	7.8	21
134	Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanotube films. Journal of Power Sources, 2022, 541, 231691.	4.0	21
135	Spontaneous Charging of Single-Walled Carbon Nanotubes:  A Novel Strategy for the Selective Substrate Deposition of Individual Tubes at Ambient Temperature. Chemistry of Materials, 2006, 18, 5052-5057.	3.2	20
136	Ion-Induced Nucleation of Dibutyl Phthalate Vapors on Spherical and Nonspherical Singly and Multiply Charged Polyethylene Glycol Ions. Journal of Physical Chemistry A, 2008, 112, 1133-1138.	1.1	20
137	Electrical behaviour of native cellulose nanofibril/carbon nanotube hybrid aerogels under cyclic compression. RSC Advances, 2016, 6, 89051-89056.	1.7	20
138	Aerosol-Assisted Fine-Tuning of Optoelectrical Properties of SWCNT Films. Journal of Physical Chemistry Letters, 2019, 10, 3961-3965.	2.1	20
139	Intersubband plasmon excitations in doped carbon nanotubes. Physical Review B, 2019, 99, .	1.1	20
140	Fine-tuning of spark-discharge aerosol CVD reactor for single-walled carbon nanotube growth: The role of ex situ nucleation. Chemical Engineering Journal, 2020, 383, 123073.	6.6	20
141	Joint effect of ethylene and toluene on carbon nanotube growth. Carbon, 2022, 189, 474-483.	5.4	20
142	Nitrogenâ€doped SWCNT synthesis using ammonia and carbon monoxide. Physica Status Solidi (B): Basic Research, 2010, 247, 2726-2729.	0.7	19
143	Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films. Beilstein Journal of Nanotechnology, 2012, 3, 692-702.	1.5	19
144	Electrochemical enhancement of optoelectronic performance of transparent and conducting single-walled carbon nanotube films. Carbon, 2020, 167, 244-248.	5.4	19

#	Article	IF	CITATIONS
145	Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating. Carbon, 2020, 168, 193-200.	5.4	19
146	Activation of catalyst particles for single-walled carbon nanotube synthesis. Chemical Engineering Journal, 2021, 413, 127475.	6.6	19
147	Multifunctional Elastic Nanocomposites with Extremely Low Concentrations of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 18866-18876.	4.0	19
148	Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes. Organic Electronics, 2016, 30, 36-39.	1.4	18
149	Terahertz-infrared electrodynamics of single-wall carbon nanotube films. Nanotechnology, 2017, 28, 445204.	1.3	18
150	Zero-phonon lines in the photoluminescence spectra ofMgO:Mn2+nanocrystals. Physical Review B, 2003, 68, .	1.1	17
151	Novel catalyst particle production method for CVD growth of single- and double-walled carbon nanotubes. Carbon, 2006, 44, 1604-1608.	5.4	17
152	Femtosecond Four-Wave-Mixing Spectroscopy of Suspended Individual Semiconducting Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 6780-6786.	7.3	17
153	Highly efficient bilateral doping of single-walled carbon nanotubes. Journal of Materials Chemistry C, 2021, 9, 4514-4521.	2.7	17
154	Investigations of mechanism of carbon nanotube growth. Physica Status Solidi (B): Basic Research, 2006, 243, 3095-3100.	0.7	16
155	Thermoacoustic sound projector: exceeding the fundamental efficiency of carbon nanotubes. Nanotechnology, 2018, 29, 325704.	1.3	16
156	Field Emission Properties of Metal Oxide Nanowires. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 35-40.	0.1	16
157	CO Disproportionation on a Nanosized Iron Cluster. Journal of Physical Chemistry C, 2009, 113, 12939-12942.	1.5	15
158	A comparative study of field emission from NanoBuds, nanographite and pure or N-doped single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 3051-3054.	0.7	15
159	Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth. Physical Chemistry Chemical Physics, 2011, 13, 11303.	1.3	15
160	Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube. New Journal of Physics, 2013, 15, 083043.	1.2	15
161	Singleâ€walled carbon nanotubes as a template for coronene stack formation. Physica Status Solidi (B): Basic Research, 2014, 251, 2372-2377.	0.7	15
162	A reference material of single-walled carbon nanotubes: quantitative chirality assessment using optical absorption spectroscopy. RSC Advances, 2015, 5, 102974-102980.	1.7	15

#	Article	IF	CITATIONS
163	Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film. Nanotechnology, 2018, 29, 105404.	1.3	15
164	Optimization of Optoelectronic Properties of Patterned Single-Walled Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2020, 12, 55141-55147.	4.0	15
165	Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. Journal of Energy Storage, 2020, 30, 101505.	3.9	15
166	Densification of single-walled carbon nanotube films: Mesoscopic distinct element method simulations and experimental validation. Journal of Applied Physics, 2020, 128, .	1.1	15
167	Novel carbon nanotube network deposition technique for electronic device fabrication. Physica Status Solidi (B): Basic Research, 2008, 245, 2272-2275.	0.7	14
168	CVD Synthesis of Hierarchical 3D MWCNT/Carbon-Fiber Nanostructures. Journal of Nanomaterials, 2008, 2008, 1-7.	1.5	14
169	High quality SWCNT synthesis in the presence of NH ₃ using a vertical flow aerosol reactor. Physica Status Solidi (B): Basic Research, 2009, 246, 2507-2510.	0.7	14
170	Fabrication of a compacted aluminum-carbon nanofiber material by hot pressing. Technical Physics, 2014, 59, 1626-1630.	0.2	14
171	Resistivity and optical transmittance dependence on length and diameter of nanowires in silver nanowire layers in application to transparent conductive coatings. Micro and Nano Letters, 2016, 11, 343-347.	0.6	14
172	Photophysical and photochemical effects in ultrafast laser patterning of CVD graphene. Journal Physics D: Applied Physics, 2016, 49, 41LT01.	1.3	14
173	Midinfrared Surface Plasmons in Carbon Nanotube Plasmonic Metasurface. Physical Review Applied, 2018, 9, .	1.5	14
174	Experimental and Computational Investigation of Hydrogen Evolution Reaction Mechanism on Nitrogen Functionalized Carbon Nanotubes. ChemCatChem, 2018, 10, 3872-3882.	1.8	14
175	Ambient Condition Production of High Quality Reduced Graphene Oxide. Advanced Materials Interfaces, 2018, 5, 1800737.	1.9	14
176	Intersubband Plasmon Observation in Electrochemically Gated Carbon Nanotube Films. ACS Applied Electronic Materials, 2020, 2, 195-203.	2.0	14
177	Fused Filament Fabricated Polypropylene Composite Reinforced by Aligned Glass Fibers. Materials, 2020, 13, 3442.	1.3	14
178	TEM Imaging of Mass-selected Polymer Molecules. Journal of Nanoparticle Research, 2002, 4, 449-453.	0.8	13
179	The local study of a nanoBud structure. Physica Status Solidi (B): Basic Research, 2008, 245, 2047-2050.	0.7	13
180	Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor. Journal of Sensors, 2012, 2012, 1-7.	0.6	13

#	Article	IF	CITATIONS
181	Performance and early applications of a versatile double aberration-corrected JEOL-2200FS FEG TEM/STEM at Aalto University. Micron, 2012, 43, 545-550.	1.1	13
182	Carbon nanotube–amorphous silicon hybrid solar cell with improved conversion efficiency. Nanotechnology, 2016, 27, 185401.	1.3	13
183	Graphene oxide reduction by solid-state laser irradiation for bolometric applications. Nanotechnology, 2018, 29, 035301.	1.3	13
184	Enhancing the thermoelectric performance of single-walled carbon nanotube-conducting polymer nanocomposites. Journal of Alloys and Compounds, 2020, 845, 156354.	2.8	13
185	Carbon nanotube film replacing silver in high-efficiency solid-state dye solar cells employing polymer hole conductor. Journal of Solid State Electrochemistry, 2015, 19, 3139-3144.	1.2	12
186	Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC Advances, 2021, 11, 30270-30282.	1.7	12
187	Nd-Doped Polarization Maintaining All-Fiber Laser With Dissipative Soliton Resonance Mode-Locking at 905 nm. Journal of Lightwave Technology, 2021, 39, 5582-5588.	2.7	12
188	Optical Study of Nanotube and Coronene Composites. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 16-22.	0.1	12
189	Scanning Anode Field Emission Microscopy of Nanocarbons. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 114-118.	0.1	12
190	Highâ€Quality Graphene Using Boudouard Reaction. Advanced Science, 2022, 9, e2200217.	5.6	12
191	Determination of helicities in unidirectional assemblies of graphitic or graphiticlike tubular structures. Applied Physics Letters, 2008, 93, 141903.	1.5	11
192	The effect of the environment on the electronic properties of single-walled carbon nanotubes. Technical Physics Letters, 2016, 42, 1071-1075.	0.2	11
193	Hybrid Lowâ€Dimensional Carbon Allotropes Formed in Gas Phase. Advanced Functional Materials, 2020, 30, 2005016.	7.8	11
194	ELECTROSPRAYING OF FERRITIN SOLUTIONS FOR THE PRODUCTION OF MONODISPERSE IRON OXIDE NANOPARTICLES. Chemical Engineering Communications, 2007, 194, 901-912.	1.5	10
195	Synthesis of single-walled carbon nanotubes by aerosol method. Inorganic Materials: Applied Research, 2011, 2, 589-595.	0.1	10
196	Imaging conduction pathways in carbon nanotube network transistors by voltage-contrast scanning electron microscopy. Nanotechnology, 2011, 22, 265715.	1.3	10
197	Improvement of the mechanical properties of single-walled carbon nanotube networks by carbon plasma coatings. Carbon, 2013, 53, 50-61.	5.4	10
198	Carbon nanotube network varactor. Nanotechnology, 2015, 26, 045201.	1.3	10

#	Article	IF	CITATIONS
199	Sign inversion in the terahertz photoconductivity of single-walled carbon nanotube films. Physical Review B, 2018, 98, .	1.1	10
200	High Performance Hydrogen Evolution Reaction Catalyst Based on Singleâ€Walled Carbon Nanotubes Decorated by RuO x Nanoparticles. ChemElectroChem, 2020, 7, 2651-2659.	1.7	10
201	Nanowire Growth without Catalysts: Applications and Mechanisms at the Atomic Scale. ACS Applied Nano Materials, 2020, 3, 7314-7324.	2.4	10
202	Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films. Nanomaterials, 2021, 11, 1503.	1.9	10
203	Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology, 2020, 31, 46LT01.	1.3	10
204	Highly efficient doping of carbon nanotube films with chloroauric acid by dip-coating. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115648.	1.7	10
205	The synthesis of few-walled carbon nanotubes by the catalytic pyrolysis of methane and the kinetics of their accumulation. Russian Journal of Physical Chemistry A, 2007, 81, 1502-1506.	0.1	9
206	Aerosol synthesis and applications of single-walled carbon nanotubes. Russian Chemical Reviews, 2011, 80, 771-786.	2.5	9
207	Selective chemical functionalization of carbon nanobuds. Carbon, 2012, 50, 4171-4174.	5.4	9
208	Noise Insights into Electronic Transport. JETP Letters, 2018, 108, 71-83.	0.4	9
209	The UV Effect on the Chemiresistive Response of ZnO Nanostructures to Isopropanol and Benzene at PPM Concentrations in Mixture with Dry and Wet Air. Chemosensors, 2021, 9, 181.	1.8	9
210	Charge-neutral nonlocal response in superconductor-InAs nanowire hybrid devices. Semiconductor Science and Technology, 2021, 36, 09LT04.	1.0	9
211	Direct measurement of carbon nanotube temperature between fiber ferrules as a universal tool for saturable absorber stability investigation. Carbon, 2021, 184, 941-948.	5.4	9
212	Dry-transfer technique for polymer-free single-walled carbon nanotube saturable absorber on a side polished fiber. Optical Materials Express, 2019, 9, 1551.	1.6	9
213	Quantum of selectivity testing: detection of isomers and close homologs using an AZO based e-nose without <i>a prior</i> training. Journal of Materials Chemistry A, 2022, 10, 8413-8423.	5.2	9
214	Single-walled carbon nanotube charging during bundling process in the gas phase. Physica Status Solidi (B): Basic Research, 2006, 243, 3234-3237.	0.7	8
215	Fabrication of carbon nanotubeâ€based fieldâ€effect transistors for studies of their memory effects. Physica Status Solidi (B): Basic Research, 2007, 244, 4188-4192.	0.7	8
216	Mechanism study of floating catalyst CVD synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2708-2712.	0.7	8

#	Article	IF	CITATIONS
217	Hydrogenâ€Driven Collapse of C ₆₀ Inside Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2012, 51, 4435-4439.	7.2	8
218	Direct observation of nanowire growth and decomposition. Scientific Reports, 2017, 7, 12310.	1.6	8
219	Adhesion of Single-Walled Carbon Nanotube Thin Films with Different Materials. Journal of Physical Chemistry Letters, 2020, 11, 504-509.	2.1	8
220	Silicone Composites with CNT/Graphene Hybrid Fillers: A Review. Materials, 2021, 14, 2418.	1.3	8
221	Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials, 2021, 11, 2549.	1.9	8
222	Surface Passivation for Efficient Bifacial HTL-free Perovskite Solar Cells with SWCNT Top Electrodes. ACS Applied Energy Materials, 0, , .	2.5	8
223	Renewable single-walled carbon nanotube membranes for extreme ultraviolet pellicle applications. Carbon, 2022, 198, 364-370.	5.4	8
224	CFD-Aerosol Modeling of the Effects of Wall Composition and Inlet Conditions on Carbon Nanotube Catalyst Particle Activity. Journal of Nanoscience and Nanotechnology, 2008, 8, 3803-3819.	0.9	7
225	Laser images recording on aerosol-synthesized single-walled carbon nanotube films. Technical Physics Letters, 2015, 41, 887-890.	0.2	7
226	Synergistic Effect of Singleâ€Walled Carbon Nanotubes and PEDOT:PSS in Thin Film Amorphous Silicon Hybrid Solar Cell. Physica Status Solidi (B): Basic Research, 2018, 255, 1700557.	0.7	7
227	Novel design strategy for GaAsâ€based solar cell by application of singleâ€walled carbon nanotubes topmost layer. Energy Science and Engineering, 2020, 8, 2938-2945.	1.9	7
228	Green Lithography for Delicate Materials. Advanced Functional Materials, 2021, 31, 2101533.	7.8	7
229	Enhanced saturable absorption in the laser-treated free-standing carbon nanotube films. Optics Letters, 2020, 45, 5377.	1.7	7
230	Gentle Patterning Approaches toward Compatibility with Bioâ€Organic Materials and Their Environmental Aspects. Small, 2022, 18, e2200476.	5.2	7
231	Differential Bioâ€Optoelectronic Gating of Semiconducting Carbon Nanotubes by Varying the Covalent Attachment Residue of a Green Fluorescent Protein. Advanced Functional Materials, 2022, 32, .	7.8	7
232	Spontaneous charging of single-walled carbon nanotubes in the gas phase. Carbon, 2006, 44, 2099-2101.	5.4	6
233	Direct synthesis of high-quality single-walled carbon nanotubes by the physical nucleation of iron nanoparticles in an atmospheric pressure carbon monoxide flow. Carbon, 2012, 50, 5343-5345.	5.4	6
234	A Novel Approach For Nanocarbon Composite Preparation. Materials Research Society Symposia Proceedings, 2012, 1454, 279-286.	0.1	6

#	Article	IF	CITATIONS
235	Mechanochemical synthesis of high-alloyed powder alloys of the Fe-Cr-Ni-Mn-N system. Russian Journal of Non-Ferrous Metals, 2013, 54, 508-512.	0.2	6
236	An Impact of Carbon Nanostructured Additives on the Kinetics of Cement Hydration. Applied Mechanics and Materials, 0, 725-726, 425-430.	0.2	6
237	All-carbon nanotube diode and solar cell statistically formed from macroscopic network. Nano Research, 2015, 8, 2800-2809.	5.8	6
238	A bolometer based on single-walled carbon nanotubes and hybrid materials. Quantum Electronics, 2016, 46, 1163-1169.	0.3	6
239	Single-walled carbon nanotubes coated with ZnO by atomic layer deposition. Nanotechnology, 2016, 27, 485709.	1.3	6
240	Robust technique for dispersion of single-walled carbon nanotubes in aqueous solutions with tRNA. Carbon, 2019, 151, 175-180.	5.4	6
241	Flexible Perovskite CsPbBr ₃ Light Emitting Devices Integrated with GaP Nanowire Arrays in Highly Transparent and Durable Functionalized Silicones. Journal of Physical Chemistry Letters, 2021, 12, 9672-9676.	2.1	6
242	Carbon Nanotube/Nanofibers and Graphite Hybrids for Li-Ion Battery Application. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	5
243	Tailoring electrochemical efficiency of hydrogen evolution by fine tuning of TiOx/RuOx composite cathode architecture. International Journal of Hydrogen Energy, 2019, 44, 10593-10603.	3.8	5
244	Evaluation of Elastic Properties and Conductivity of Chitosan Acetate Films in Ammonia and Water Vapors Using Acoustic Resonators. Sensors, 2020, 20, 2236.	2.1	5
245	Electromechanical properties of fibers produced from randomly oriented SWCNT films by wet pulling technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115178.	1.7	5
246	Optoacoustic Effect in a Hybrid Multilayered Membrane Deposited on a Hollow-Core Microstructured Optical Waveguide. ACS Photonics, 2021, 8, 3346-3356.	3.2	5
247	Reinforcing randomly oriented transparent freestanding single-walled carbon nanotube films. Carbon, 2013, 62, 513-516.	5.4	4
248	Giga- and terahertz-range nanoemitter based on peapod structure. Nano Research, 2015, 8, 2595-2602.	5.8	4
249	The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors. Nanomaterials, 2017, 7, 455.	1.9	4
250	Numerical simulation of the carbon nanotubes transport layer influence on performance of GaAs solar cell. Journal of Physics: Conference Series, 2018, 1124, 041040.	0.3	4
251	Charge transport mechanisms in macro-scale CNT films. Journal of Physics: Conference Series, 2018, 1092, 012178.	0.3	4
252	Direct injection of SWCNTs into liquid after supercritical nitrogen treatment. Carbon, 2019, 152, 66-69.	5.4	4

#	Article	IF	CITATIONS
253	Single-walled carbon nanotube membranes as non-reflective substrates for nanophotonic applications. Nanotechnology, 2021, 32, 095206.	1.3	4
254	Terahertz-infrared spectroscopy of wafer-scale films of single-walled carbon nanotubes treated by plasma. Carbon, 2022, 189, 413-421.	5.4	4
255	Local ultra-densification of single-walled carbon nanotube films: Experiment and mesoscopic modeling. Carbon, 2022, 196, 979-987.	5.4	4
256	Effect of CO2 and H2O on the synthesis of single-walled CNTs. Physica Status Solidi (B): Basic Research, 2006, 243, 3087-3090.	0.7	3
257	Ambient Method for the Production of an Ionically Gated Carbon Nanotube Common Cathode in Tandem Organic Solar Cells. Journal of Visualized Experiments, 2014, , e52380.	0.2	3
258	High-temperature transformations of coronene-based graphene nanoribbons encapsulated in SWNTs. Physica Status Solidi (B): Basic Research, 2015, 252, 2491-2495.	0.7	3
259	Hybrid Aluminum Composite Materials Based on Carbon Nanostructures. Medziagotyra, 2015, 21, .	0.1	3
260	Photon-drag in single-walled carbon nanotube and silver-palladium films: the effect of polarization. Journal of Nanophotonics, 2015, 10, 012505.	0.4	3
261	Study of p-type contact topography influence on characteristics of microdisk and microring lasers. Journal of Physics: Conference Series, 2018, 1124, 041012.	0.3	3
262	Gas Sensor Based on the Piezoelectric Resonator with Lateral Electric Field and Films of Chitosan Salts. , 2019, , .		3
263	Chemical space mapping for multicomponent gas mixtures. Journal of Electroanalytical Chemistry, 2021, 895, 115472.	1.9	3
264	Individual SWCNT Transistor with Photosensitive Planar Junction Induced by Twoâ€Photon Oxidation. Advanced Electronic Materials, 2021, 7, 2000872.	2.6	3
265	Localization of helical edge states in the absence of external magnetic field. Physical Review B, 2021, 104, .	1.1	3
266	Morphology and structure of carbon nanotubes synthesized on iron catalyst in the presence of carbon monooxide. Nanotechnologies in Russia, 2010, 5, 198-208.	0.7	2
267	GaAs Nanowire and Crystallite Growth on Amorphous Substrate from Metalorganic Precursors. Japanese Journal of Applied Physics, 2010, 49, 020213.	0.8	2
268	Aerosol synthesized carbon nanotube films for stretchable electronic applications. , 2015, , .		2
269	On the high charge-carrier mobility in polyaniline molecular channels in nanogaps between carbon nanotubes. Semiconductors, 2017, 51, 488-491.	0.2	2
270	Hybrid heterojunction solar cells based on singleâ€walled carbon nanotubes and amorphous silicon thin films. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e402.	1.9	2

#	Article	IF	CITATIONS
271	Thermal conductance and nonequilibrium superconductivity in a diffusive NSN wire probed by shot noise. Physical Review B, 2021, 104, .	1.1	2
272	Optoelectronic Performance of Nitrogen-Doped Single-Walled Carbon Nanotube Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 68-72.	0.1	2
273	Bi-hierarchical porous Pt microspheres grown on Ti wire with TiO 2 nanotubes layer for selective alcohol sensing. , 2022, 1, .		2
274	Heat-Mode Excitation in a Proximity Superconductor. Nanomaterials, 2022, 12, 1461.	1.9	2
275	Effect of acceleration by internal and external force fields on particle motion in intermediate regimes between the hydrodynamic and free-molecular limits. Journal of Experimental and Theoretical Physics, 2005, 101, 1147-1152.	0.2	1
276	Synthesis of Tungsten Diselenide Nanoparticles by Chemical Vapor Condensation Method. Medziagotyra, 2015, 21, .	0.1	1
277	Polymer-Free Carbon Nanotubes Saturable Absorbers for Nanosecond Pulse Generation. Journal of Physics: Conference Series, 2016, 740, 012017.	0.3	1
278	Mode locking of a fibre laser with a matrix-less carbon nanotube film. , 2017, , .		1
279	All-PM Fibre Laser with Switchable Pulsed Regimes Driven by Electrochemically Gated Carbon Nanotube Saturable Absorber. , 2019, , .		1
280	Specular Reflectometry Studies of Alcohol-Induced Densification for Thin Films of Single-Walled Carbon Nanotubes. Journal of Surface Investigation, 2021, 15, 773-776.	0.1	1
281	Flexible Electrode Formed by Patterned Layers of Single-Walled Carbon Nanotubes for Optoelectronic Applications. Journal of Physics: Conference Series, 2021, 2015, 012093.	0.3	1
282	Dual-wavelength Soliton Dumbbell-shaped Thulium-doped Fiber Laser. , 2020, , .		1
283	Electronic transport measurements and Raman spectroscopy on carbon nanotube devices. Physica Status Solidi (B): Basic Research, 2009, 246, 2853-2856.	0.7	0
284	Fluctuation theory of single-walled carbon nanotube formation. Journal of Chemical Physics, 2013, 139, 204705.	1.2	0
285	SINGLE-WALLED CARBON NANOTUBE FILM BASED POLARIZATION ANALYZER. , 2013, , .		0
286	Hybrid Single Walled Carbon Nanotube - Quantum Dot photosensors. , 2015, , .		0
287	Control over the resonance wavelength of fibre Bragg gratings using resistive coatings based on single-wall carbon nanotubes. Quantum Electronics, 2016, 46, 919-923.	0.3	Ο
288	Efficient ultrafast THz modulators based on negative photoconductivity in controllably doped carbon nanotubes. , 2019, , .		0

#	Article	IF	CITATIONS
289	Dependence of terahertz conductivity of CNT-based macroscale films on the CNT length and on plasma exposure time. , 2019, , .		Ο
290	Current Distribution in GaAs Solar Cell with Carbon Nanotube Transport Layer. Journal of Physics: Conference Series, 2019, 1400, 066053.	0.3	0
291	Control of Nonlinear Optical Properties of the Carbon Nanotubes Saturable Absorber with Electrochemical Gating. , 2019, , .		Ο
292	Lithography and Plasma Treatment Effect on Conductivity of Carbon Nanotubes. Semiconductors, 2019, 53, 1926-1928.	0.2	0
293	AlGaAs/GaAs solar cell with CNT transport layer: numerical simulation. Journal of Physics: Conference Series, 2019, 1410, 012107.	0.3	0
294	Solar cells based on GaAs and carbon nanotubes. Journal of Physics: Conference Series, 2020, 1482, 012035.	0.3	0
295	Mode-locked Ho3+-doped fiber laser with a dumbbell-shaped cavity. , 2021, , .		Ο
296	Dumbbell-shaped Mode-locked Ho3+-doped Fiber Laser. , 2021, , .		0
297	Terahertz-infrared conductivity of plasma-treated of CNT-based macroscale films. AIP Conference Proceedings, 2021, , .	0.3	0
298	TEM Verification of Optical Diameter Distribution Analysis for Nitrogen-Doped SWCNT Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 17-21.	0.1	0
299	SWCNT-Based Bismuth-Doped Fiber Laser at 1.32 \hat{l} 4m. , 2018, , .		Ο
300	Electro-optically gated in-line saturable absorbers for fibre lasers. , 2019, , .		0
301	Improvement of single walled carbon nanotubes layer conductivity by texturing. Journal of Physics: Conference Series, 2020, 1697, 012123.	0.3	0
302	Highly transparent and conductive textured single walled carbon nanotube electrode for optoelectronic applications. AIP Conference Proceedings, 2020, , .	0.3	0
303	Terahertz conductivity of plasma-treated of CNT-based macroscale films. AIP Conference Proceedings, 2020, , .	0.3	0
304	A universal method for determination of helicities present in unidirectional groupings of graphitic or graphitic-like tubular structures. , 2008, , 135-136.		0
305	Flexible suspended membranes of GaP nanowires. , 2020, , .		0
306	Mapping of the pulse states of a fiber laser with ionic liquid gated carbon nanotube saturable absorber. , 2020, , .		0

#	Article	IF	CITATIONS
307	Light-emitting p-i-n GaP/GaPAs NW encapsulated in a flexible PDMS membrane. Journal of Physics: Conference Series, 2021, 2103, 012178.	0.3	0
308	Average SWCNT bundle length estimated by resistance measurement. Journal of Physics: Conference Series, 2021, 2103, 012131.	0.3	0
309	Processing and characterization of GaP nanowires encapsulated into a PDMS large-scale membrane for flexible optoelectronics. Journal of Physics: Conference Series, 2021, 2086, 012093.	0.3	0