Yunhui Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201747/publications.pdf Version: 2024-02-01

YUNHUI CHEN

#	Article	IF	CITATIONS
1	Sinter formation during directed energy deposition of titanium alloy powders. International Journal of Machine Tools and Manufacture, 2022, 176, 103887.	6.2	12
2	In situ X-ray quantification of melt pool behaviour during directed energy deposition additive manufacturing of stainless steel. Materials Letters, 2021, 286, 129205.	1.3	28
3	Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242. Additive Manufacturing, 2021, 41, 101969.	1.7	17
4	Correlative Synchrotron X-ray Imaging and Diffraction of Directed Energy Deposition Additive Manufacturing. Acta Materialia, 2021, 209, 116777.	3.8	47
5	Variance Stabilised Optimisation of Neural Networks: A Case Study in Additive Manufacturing. , 2021, , .		1
6	In situ radiographic and ex situ tomographic analysis of pore interactions during multilayer builds in laser powder bed fusion. Additive Manufacturing, 2020, 36, 101512.	1.7	20
7	In-situ Synchrotron imaging of keyhole mode multi-layer laser powder bed fusion additive manufacturing. Applied Materials Today, 2020, 20, 100650.	2.3	46
8	Sintering and biocompatibility of blended elemental Ti-xNb alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103691.	1.5	27
9	A biocompatible thermoset polymer binder for Direct Ink Writing of porous titanium scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 95, 160-165.	3.8	32
10	Finite element analysis of porous commercially pure titanium for biomedical implant application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 43-50.	2.6	41
11	Biocompatible porous titanium scaffolds produced using a novel space holder technique. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2796-2806.	1.6	16
12	Optimising the mechanical properties of Ti-6Al-4V components produced by wire + arc additive manufacturing with post-process heat treatments. Journal of Alloys and Compounds, 2018, 753, 247-255.	2.8	138
13	Porous Titanium Scaffolds Fabricated by Metal Injection Moulding for Biomedical Applications. Materials, 2018, 11, 1573.	1.3	16
14	Manufacturing of biocompatible porous titanium scaffolds using a novel spherical sugar pellet space holder. Materials Letters, 2017, 195, 92-95.	1.3	34
15	Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 169-174.	1.5	128
16	Manufacturing of graded titanium scaffolds using a novel space holder technique. Bioactive Materials, 2017, 2, 248-252.	8.6	21
17	Nanometric Cutting of Crystal Surfaces Modified by Ion Implantation. , 2015, , 1425-1472.		0
18	Molecular Dynamics Simulation of the Deformation of Single Crystal Gallium Arsenide. Applied Mechanics and Materials. 2014, 553, 60-65.	0.2	2

Yunhui Chen

#	Article	IF	CITATIONS
19	MD simulation of nanometric cutting of copper with and without water lubrication. Science China Technological Sciences, 2014, 57, 1154-1159.	2.0	22
20	Molecular dynamics of nanometric processing of ion implanted monocrystalline silicon surfaces. Transactions of Tianjin University, 2014, 20, 203-209.	3.3	1
21	Enhancement of terahertz radiation from GaP emitters by subwavelength antireflective micropyramid structures. Optics Letters, 2013, 38, 2053.	1.7	11
22	Distinguishing octane grades in gasoline using terahertz metamaterials. Applied Optics, 2012, 51, 3258.	0.9	24
23	Surface modification for brittle monocrystalline materials by MeV ions. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 433-436.	0.6	6
24	Nanometric cutting of single crystal silicon surfaces modified by ion implantation. CIRP Annals - Manufacturing Technology, 2011, 60, 527-530.	1.7	91