Boyang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/320173/publications.pdf

Version: 2024-02-01

623188 794141 20 809 14 19 citations g-index h-index papers 21 21 21 1080 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and \hat{l}^2 -tri-Calcium Phosphate. Materials, 2018, 11, 129.	1.3	121
2	Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 98, 266-278.	3.8	89
3	Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Materials Science and Engineering C, 2020, 108, 110374.	3.8	70
4	3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111433.	3.8	66
5	Assessment of PCL/carbon material scaffolds for bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 52-60.	1.5	53
6	Carbon nanotubes and their polymeric composites: the applications in tissue engineering. Biomanufacturing Reviews, 2020, 5, 1.	4.8	51
7	Engineering the vasculature with additive manufacturing. Current Opinion in Biomedical Engineering, 2017, 2, 1-13.	1.8	46
8	Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment. 3D Printing and Additive Manufacturing, 2020, 7, 105-113.	1.4	46
9	In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering. Bio-Design and Manufacturing, 2021, 4, 190-202.	3.9	46
10	Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds. Polymer Testing, 2018, 68, 365-378.	2.3	40
11	Engineered dual-scale poly (Îμ-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration. Additive Manufacturing, 2020, 36, 101452.	1.7	38
12	The Potential of Polyethylene Terephthalate Glycol as Biomaterial for Bone Tissue Engineering. Polymers, 2020, 12, 3045.	2.0	33
13	Topology optimised metallic bone plates produced by electron beam melting: a mechanical and biological study. International Journal of Advanced Manufacturing Technology, 2019, 104, 195-210.	1.5	23
14	Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers, 2022, 14, 445.	2.0	20
15	A Novel and Green Metallurgical Technique of Highly Efficient Iron Recovery from Refractory Low-Grade Iron Ores. ACS Sustainable Chemistry and Engineering, 2019, 7, 18726-18737.	3.2	18
16	Investigating the Influence of Architecture and Material Composition of 3D Printed Anatomical Design Scaffolds for Large Bone Defects. International Journal of Bioprinting, 2021, 7, 268.	1.7	14
17	In Vivo Investigation of Polymer-Ceramic PCL/HA and PCL/ \hat{I}^2 -TCP 3D Composite Scaffolds and Electrical Stimulation for Bone Regeneration. Polymers, 2022, 14, 65.	2.0	12
18	Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds. ACS Omega, 2022, 7, 7515-7530.	1.6	11

#	Article	IF	CITATIONS
19	Novel insights into the reoxidation of direct reduced iron (DRI) during ball-mill treatment: A combined experimental and computational study. Applied Surface Science, 2021, 552, 149485.	3.1	8
20	Additive Biomanufacturing Processes to Fabricate Scaffolds for Tissue Engineering., 2021,, 95-124.		0