
Simon A Josey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 2018, 130, 79-139.	2.4	357
2	New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology. Journal of Climate, 1999, 12, 2856-2880.	3.2	300
3	An imperative to monitor Earth's energy imbalance. Nature Climate Change, 2016, 6, 138-144.	18.8	284
4	The North Atlantic Ocean Is in a State of Reduced Overturning. Geophysical Research Letters, 2018, 45, 1527-1533.	4.0	263
5	Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic. Nature Communications, 2020, 11, 585.	12.8	142
6	Inverse Analysis Adjustment of the SOC Air–Sea Flux Climatology Using Ocean Heat Transport Constraints. Journal of Climate, 2003, 16, 3274-3295.	3.2	129
7	Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Climate Dynamics, 2014, 43, 709-736.	3.8	127
8	Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave. Environmental Research Letters, 2016, 11, 074004.	5.2	122
9	Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. Journal of Geophysical Research, 2011, 116, .	3.3	114
10	Critical Southern Ocean climate model biases traced to atmospheric model cloud errors. Nature Communications, 2018, 9, 3625.	12.8	109
11	A Comparison of ECMWF, NCEP–NCAR, and SOC Surface Heat Fluxes with Moored Buoy Measurements in the Subduction Region of the Northeast Atlantic. Journal of Climate, 2001, 14, 1780-1789.	3.2	105
12	Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophysical Research Letters, 2014, 41, 7868-7874.	4.0	99
13	Abrupt warming and salting of the Western Mediterranean Deep Water after 2005: Atmospheric forcings and lateral advection. Journal of Geophysical Research, 2010, 115, .	3.3	98
14	Global water cycle amplifying at less than the Clausius-Clapeyron rate. Scientific Reports, 2016, 6, 38752.	3.3	98
15	Copernicus Marine Service Ocean State Report. Journal of Operational Oceanography, 2018, 11, S1-S142.	1.2	96
16	Rapid response to climate change in a marginal sea. Scientific Reports, 2017, 7, 4065.	3.3	94
17	The Recent Atlantic Cold Anomaly: Causes, Consequences, and Related Phenomena. Annual Review of Marine Science, 2018, 10, 475-501.	11.6	82
18	Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Climate Dynamics, 2011, 37, 2067-2086.	3.8	77

#	Article	IF	CITATIONS
19	The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. Journal of Geophysical Research: Oceans, 2013, 118, 944-952.	2.6	75
20	The roles of surface heat flux and ocean heat transport convergence in determining Atlantic Ocean temperature variability. Ocean Dynamics, 2010, 60, 771-790.	2.2	74
21	Surface freshwater flux variability and recent freshening of the North Atlantic in the eastern subpolar gyre. Journal of Geophysical Research, 2005, 110, .	3.3	70
22	Atlantic Deep Water Formation Occurs Primarily in the Iceland Basin and Irminger Sea by Local Buoyancy Forcing. Geophysical Research Letters, 2020, 47, e2020GL091028.	4.0	65
23	Impact of ocean resolution on coupled airâ€sea fluxes and largeâ€scale climate. Geophysical Research Letters, 2016, 43, 10,430.	4.0	61
24	First airâ€sea flux mooring measurements in the Southern Ocean. Geophysical Research Letters, 2012, 39,	4.0	57
25	Improved estimates of water cycle change from ocean salinity: the key role of ocean warming. Environmental Research Letters, 2018, 13, 074036.	5.2	52
26	Changes in freshwater content in the North Atlantic Ocean 1955–2006. Geophysical Research Letters, 2007, 34, .	4.0	50
27	Intensification of the global water cycle and evidence from ocean salinity: a synthesis review. Annals of the New York Academy of Sciences, 2020, 1472, 76-94.	3.8	48
28	Exchanges Through the Ocean Surface. International Geophysics, 2013, , 115-140.	0.6	47
29	Mediterranean Sea level and barotropic flow through the Strait of Gibraltar for the period 1958–2001 and reconstructed since 1659. Journal of Geophysical Research, 2006, 111, .	3.3	46
30	On the Relationship between the North Atlantic Meridional Overturning Circulation and the Surface-Forced Overturning Streamfunction. Journal of Climate, 2009, 22, 4989-5002.	3.2	46
31	Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Climate Dynamics, 2016, 46, 4027-4045.	3.8	44
32	Mediterranean sea water budget long-term trend inferred from salinity observations. Climate Dynamics, 2018, 51, 2857-2876.	3.8	42
33	Atmospheric Forcing of the Winter Air–Sea Heat Fluxes over the Northern Red Sea. Journal of Climate, 2013, 26, 1685-1701.	3.2	40
34	Unexpected impacts of the Tropical Pacific array on reanalysis surface meteorology and heat fluxes. Geophysical Research Letters, 2014, 41, 6213-6220.	4.0	39
35	Impacts of Climate Modes on Air–Sea Heat Exchange in the Red Sea. Journal of Climate, 2015, 28, 2665-2681.	3.2	39
36	Mechanisms for recent warming of the North Atlantic: Insights gained with an eddyâ€permitting model. Journal of Geophysical Research, 2008, 113, .	3.3	38

#	Article	IF	CITATIONS
37	The Global Ocean Water Cycle in Atmospheric Reanalysis, Satellite, and Ocean Salinity. Journal of Climate, 2017, 30, 3829-3852.	3.2	37
38	Mountain ranges favour vigorous Atlantic meridional overturning. Geophysical Research Letters, 2012, 39, .	4.0	36
39	Extreme Variability in Irminger Sea Winter Heat Loss Revealed by Ocean Observatories Initiative Mooring and the ERA5 Reanalysis. Geophysical Research Letters, 2019, 46, 293-302.	4.0	36
40	Large-Scale Atmospheric Circulation Favoring Deep- and Intermediate-Water Formation in the Mediterranean Sea. Journal of Climate, 2012, 25, 6079-6091.	3.2	34
41	Recent multivariate changes in the North Atlantic climate system, with a focus on 2005–2016. International Journal of Climatology, 2018, 38, 5050-5076.	3.5	34
42	Episodic Southern Ocean Heat Loss and Its Mixed Layer Impacts Revealed by the Farthest South Multiyear Surface Flux Mooring. Geophysical Research Letters, 2018, 45, 5002-5010.	4.0	34
43	Estimates of meridional overturning circulation variability in the North Atlantic from surface density flux fields. Journal of Geophysical Research, 2009, 114, .	3.3	30
44	On the accuracy of North Atlantic temperature and heat storage fields from Argo. Journal of Geophysical Research, 2007, 112, .	3.3	29
45	Satelliteâ€Based Sea Surface Salinity Designed for Ocean and Climate Studies. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017676.	2.6	29
46	Maintenance and Broadening of the Ocean's Salinity Distribution by the Water Cycle. Journal of Climate, 2015, 28, 9550-9560.	3.2	28
47	Major variations in subtropical North Atlantic heat transport at short (5 day) timescales and their causes. Journal of Geophysical Research: Oceans, 2016, 121, 3237-3249.	2.6	27
48	Potential for seasonal prediction of Atlantic sea surface temperatures using the RAPID array at 26 \$\$^{circ }\$\$ â~ N. Climate Dynamics, 2016, 46, 3351-3370.	3.8	27
49	Local and Remote Influences on the Heat Content of the Labrador Sea: An Adjoint Sensitivity Study. Journal of Geophysical Research: Oceans, 2018, 123, 2646-2667.	2.6	24
50	Gulf Stream Variability in the Context of Quasiâ€Đecadal and Multidecadal Atlantic Climate Variability. Geophysical Research Letters, 2018, 45, 11,257.	4.0	24
51	Mooring Observations of Air–Sea Heat Fluxes in Two Subantarctic Mode Water Formation Regions. Journal of Climate, 2020, 33, 2757-2777.	3.2	23
52	Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic. Ocean Science, 2021, 17, 1353-1365.	3.4	21
53	Temperature signature of high latitude Atlantic boundary currents revealed by marine mammalâ€borne sensor and Argo data. Geophysical Research Letters, 2011, 38, .	4.0	20
54	The Surface-Forced Overturning of the North Atlantic: Estimates from Modern Era Atmospheric Reanalysis Datasets. Journal of Climate, 2014, 27, 3596-3618.	3.2	20

#	Article	IF	CITATIONS
55	Increasing Atlantic Ocean Heat Transport in the Latest Generation Coupled Oceanâ€Atmosphere Models: The Role of Air‧ea Interaction. Journal of Geophysical Research: Oceans, 2018, 123, 8624-8637.	2.6	15
56	Surface estimates of the Atlantic overturning in density space in an eddyâ€permitting ocean model. Journal of Geophysical Research, 2012, 117, .	3.3	14
57	Seasonal variability of the warm Atlantic water layer in the vicinity of the Greenland shelf break. Geophysical Research Letters, 2014, 41, 8530-8537.	4.0	14
58	Ocean precursors to the extreme Atlantic 2017 hurricane season. Nature Communications, 2019, 10, 896.	12.8	14
59	Mechanisms for Late 20th and Early 21st Century Decadal AMOC Variability. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017865.	2.6	14
60	Impact on the ocean of extreme Greenland Sea heat loss in the HadCM3 coupled ocean-atmosphere model. Journal of Geophysical Research, 2007, 112, .	3.3	13
61	Future Evolution of an Eddy Rich Ocean Associated with Enhanced East Atlantic Storminess in a Coupled Model Projection. Geophysical Research Letters, 2021, 48, e2021GL092719.	4.0	13
62	Insights into Decadal North Atlantic Sea Surface Temperature and Ocean Heat Content Variability from an Eddy-Permitting Coupled Climate Model. Journal of Climate, 2019, 32, 6137-6161.	3.2	12
63	A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics, 2022, 59, 1897-1918.	3.8	12
64	Increasing tropical cyclone intensity and potential intensity in the subtropical Atlantic around Bermuda from an ocean heat content perspective 1955–2019. Environmental Research Letters, 2021, 16, 034052.	5.2	11
65	Signatures of the 1976–1977 Regime Shift in the North Pacific Revealed by Statistical Analysis. Journal of Geophysical Research: Oceans, 2018, 123, 4388-4397.	2.6	9
66	Heat Distribution in the Southeast Pacific Is Only Weakly Sensitive to High‣atitude Heat Flux and Wind Stress. Journal of Geophysical Research: Oceans, 2019, 124, 8647-8666.	2.6	9
67	Rapid Cooling and Increased Storminess Triggered by Freshwater in the North Atlantic. Geophysical Research Letters, 2020, 47, e2020GL087207.	4.0	9
68	Global warming and changes of continentality since 1948. Weather, 2007, 62, 215-221.	0.7	8
69	Airâ€sea interaction regimes in the subâ€Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements. Journal of Geophysical Research: Oceans, 2017, 122, 6547-6564.	2.6	8
70	Importance of Boundary Processes for Heat Uptake in the Subpolar North Atlantic. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016366.	2.6	8
71	Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework. Journal of Geophysical Research: Oceans, 2016, 121, 8787-8806.	2.6	7
72	Extratropical-cyclone-induced sea surface temperature anomalies in the 2013–2014Âwinter. Weather and Climate Dynamics, 2020, 1, 27-44.	3.5	7

#	Article	IF	CITATIONS
73	Response of the Denmark Strait overflow to Nordic Seas heat loss. Journal of Geophysical Research, 2008, 113, .	3.3	6
74	The Sensitivity of Southeast Pacific Heat Distribution to Local and Remote Changes in Ocean Properties. Journal of Physical Oceanography, 2020, 50, 773-790.	1.7	6
75	Demographic profiles and environmental drivers of variation relate to individual breeding state in a long-lived trans-oceanic migratory seabird, the Manx shearwater. PLoS ONE, 2021, 16, e0260812.	2.5	6
76	Impact of Barents Sea winter airâ€sea exchanges on Fram Strait dense water transport. Journal of Geophysical Research: Oceans, 2014, 119, 1009-1021.	2.6	5
77	Prospects for seasonal forecasting of iceberg distributions in the North Atlantic. Natural Hazards, 2018, 91, 447-471.	3.4	5
78	Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system. Climate Dynamics, 2019, 53, 4799-4820.	3.8	5
79	A Subannual Subsurface Pathway From the Gulf Stream to the Subpolar Gyre and Its Role in Warming and Salinification in the 1990s. Geophysical Research Letters, 2019, 46, 7518-7526.	4.0	5
80	Local and Remote Influences on the Heat Content of Southern Ocean Mode Water Formation Regions. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016585.	2.6	5
81	Subpolar Atlantic Ocean mixed layer heat content variability is increasingly driven by an active ocean. Communications Earth & Environment, 2022, 3, .	6.8	5
82	Causes of the 2015 North Atlantic cold anomaly in a global state estimate. Ocean Science, 2022, 18, 953-978.	3.4	2
83	The Major Role of Air‣ea Heat Fluxes in Driving Interannual Variations of Gulf Stream Transport. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC016004.	2.6	1

Air–Sea Interaction: Heat and Momentum Fluxes. , 2019, , 1-7.

0