
Teymuras V Kurzchalia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201552/publications.pdf Version: 2024-02-01

TEVMIDAS V KUDZCHALIA

#	Article	IF	CITATIONS
1	Quantitative imaging of Caenorhabditis elegans dauer larvae during cryptobiotic transition. Biophysical Journal, 2022, 121, 1219-1229.	0.5	6
2	Glycolate combats massive oxidative stress by restoring redox potential in Caenorhabditis elegans. Communications Biology, 2021, 4, 151.	4.4	14
3	Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron, 2020, 105, 867-881.e9.	8.1	101
4	C. elegans possess a general program to enter cryptobiosis that allows dauer larvae to survive different kinds of abiotic stress. Scientific Reports, 2020, 10, 13466.	3.3	15
5	Exogenous ethanol induces a metabolic switch that prolongs the survival of <i>Caenorhabditis elegans</i> dauer larva and enhances its resistance to desiccation. Aging Cell, 2020, 19, e13214.	6.7	11
6	A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biology, 2020, 18, 31.	3.8	47
7	Endocannabinoids in Caenorhabditis elegans are essential for the mobilization of cholesterol from internal reserves. Scientific Reports, 2018, 8, 6398.	3.3	32
8	Phosphorylated glycosphingolipids essential for cholesterol mobilization in Caenorhabditis elegans. Nature Chemical Biology, 2017, 13, 647-654.	8.0	23
9	Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding. Nature Communications, 2017, 8, 1266.	12.8	52
10	The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. ELife, 2016, 5, .	6.0	64
11	NAD+ Is a Food Component That Promotes Exit from Dauer Diapause in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0167208.	2.5	17
12	The C. elegans dauer larva as a paradigm to study metabolic suppression and desiccation tolerance. Planta, 2015, 242, 389-396.	3.2	38
13	Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans. Nature Communications, 2015, 6, 8060.	12.8	34
14	The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans. Langmuir, 2014, 30, 12897-12906.	3.5	19
15	Products of the Parkinson's disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biology Open, 2014, 3, 777-784.	1.2	49
16	A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nature Chemical Biology, 2014, 10, 281-285.	8.0	23
17	Systematic Screening for Novel Lipids by Shotgun Lipidomics. Analytical Chemistry, 2014, 86, 2703-2710.	6.5	37
18	Molecular Strategies of the Caenorhabditis elegans Dauer Larva to Survive Extreme Desiccation. PLoS ONE, 2013, 8, e82473.	2.5	96

TEYMURAS V KURZCHALIA

#	Article	IF	CITATIONS
19	How worms survive desiccation. Worm, 2012, 1, 61-65.	1.0	17
20	Stereoselective synthesis and hormonal activity of novel dafachronic acids and naturally occurring steroids isolated from corals. Organic and Biomolecular Chemistry, 2012, 10, 4159.	2.8	18
21	CAVINâ€3 regulates circadian period length and PER:CRY protein abundance and interactions. EMBO Reports, 2012, 13, 1138-1144.	4.5	17
22	Trehalose Renders the Dauer Larva of Caenorhabditis elegans Resistant to Extreme Desiccation. Current Biology, 2011, 21, 1331-1336.	3.9	149
23	Synthesis of Ten Members of the Maradolipid Family; Novel Diacyltrehalose Glycolipids from Caenorhabditis elegans. Synlett, 2011, 2011, 2482-2486.	1.8	1
24	Longâ€Chain <i>O</i> â€Ascarosylâ€alkanediols Are Constitutive Components of <i>Caenorhabditis elegans</i> but Do Not Induce Dauer Larva Formation. Chemistry and Biodiversity, 2010, 7, 2016-2022.	2.1	8
25	Maradolipids: Diacyltrehalose Glycolipids Specific to Dauer Larva in <i>Caenorhabditis elegans</i> . Angewandte Chemie - International Edition, 2010, 49, 9430-9435.	13.8	47
26	Structure of sterol aliphatic chains affects yeast cell shape and cell fusion during mating. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4170-4175.	7.1	53
27	Survival strategies of a sterol auxotroph. Development (Cambridge), 2010, 137, 3675-3685.	2.5	125
28	Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Organic and Biomolecular Chemistry, 2010, 8, 739-750.	2.8	24
29	4α-Bromo-5α-cholestan-3β-ol and nor-5α-cholestan-3β-ol derivatives—stereoselective synthesis and hormonal activity in Caenorhabditis elegans. Organic and Biomolecular Chemistry, 2009, 7, 2303.	2.8	6
30	Improved Synthesis of an Ascaroside Pheromone Controlling Dauer Larva Development in Caenorhabditis elegans. Synthesis, 2009, 2009, 3488-3492.	2.3	2
31	Synthesis and Hormonal Activity of the (25 <i>S</i>)â€Cholestenâ€26â€oic Acids – Potent Ligands for the DAFâ€12 Receptor in <i>Caenorhabditis elegans</i> . European Journal of Organic Chemistry, 2009, 2009, 3703-3714.	2.4	18
32	Methylation of the Sterol Nucleus by STRM-1 Regulates Dauer Larva Formation in Caenorhabditis elegans. Developmental Cell, 2009, 16, 833-843.	7.0	48
33	Two cytochrome P450s in Caenorhabditis elegans are essential for the organization of eggshell, correct execution of meiosis and the polarization of embryo. Mechanisms of Development, 2009, 126, 382-393.	1.7	54
34	Synthesis and biological activity of the (25R)-cholesten-26-oic acids—ligands for the hormonal receptor DAF-12 in Caenorhabditis elegans. Organic and Biomolecular Chemistry, 2009, 7, 909.	2.8	30
35	Stereoselective Synthesis of (25R)-Dafachronic Acids and (25R)-Cholestenoic Acid as Potential Ligands for the DAF-12 Receptor in Caenorhabditis elegans. Synlett, 2008, 2008, 1965-1968.	1.8	0
36	Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice. Biochemical and Biophysical Research Communications, 2008, 367, 826-833.	2.1	20

TEYMURAS V KURZCHALIA

#	Article	IF	CITATIONS
37	Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 2008, 49, 1137-1146.	4.2	1,801
38	Stereoselective synthesis of the hormonally active (25S)-î"7-dafachronic acid, (25S)-î"4-dafachronic acid, (25S)-dafachronic acid, and (25S)-cholestenoic acid. Organic and Biomolecular Chemistry, 2008, 6, 4293.	2.8	34
39	LET-767 Is Required for the Production of Branched Chain and Long Chain Fatty Acids in Caenorhabditis elegans. Journal of Biological Chemistry, 2008, 283, 17550-17560.	3.4	75
40	Top-Down Lipidomic Screens by Multivariate Analysis of High-Resolution Survey Mass Spectra. Analytical Chemistry, 2007, 79, 4083-4093.	6.5	179
41	Lipid Profiling by Multiple Precursor and Neutral Loss Scanning Driven by the Data-Dependent Acquisition. Analytical Chemistry, 2006, 78, 585-595.	6.5	272
42	Cholesterol-Induced Caveolin Targeting to Lipid Droplets in Adipocytes: A Role for Caveolar Endocytosis. Traffic, 2006, 7, 549-561.	2.7	158
43	Protein kinase C-mediated endothelial barrier regulation is caveolin-1-dependent. Histochemistry and Cell Biology, 2006, 126, 17-26.	1.7	24
44	Regio- and Stereospecific Synthesis of Cholesterol Derivatives and Their Hormonal Activity inCaenorhabditis elegans. European Journal of Organic Chemistry, 2006, 2006, 3687-3706.	2.4	24
45	Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. Journal of Clinical Investigation, 2006, 116, 1284-1291.	8.2	318
46	Caveolin-1 Is Essential for Liver Regeneration. Science, 2006, 313, 1628-1632.	12.6	235
47	Getting rid of caveolins: Phenotypes of caveolin-deficient animals. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 322-333.	4.1	139
48	Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. Journal of Cell Biology, 2005, 168, 465-476.	5.2	385
49	Clathrin- and caveolin-1–independent endocytosis. Journal of Cell Biology, 2005, 168, 477-488.	5.2	399
50	From The Cover: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3272-3277.	7.1	381
51	Cholesterol-dependent Lipid Assemblies Regulate the Activity of the Ecto-nucleotidase CD39. Journal of Biological Chemistry, 2005, 280, 26406-26414.	3.4	74
52	Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2005, 16, 175-182.	5.0	63
53	Sterol-Derived Hormone(s) Controls Entry into Diapause in Caenorhabditis elegans by Consecutive Activation of DAF-12 and DAF-16. PLoS Biology, 2004, 2, e280.	5.6	142
54	Why do worms need cholesterol?. Nature Cell Biology, 2003, 5, 684-688.	10.3	169

#	Article	IF	CITATIONS
55	Caveolin Interacts with the Angiotensin II Type 1 Receptor during Exocytic Transport but Not at the Plasma Membrane. Journal of Biological Chemistry, 2003, 278, 23738-23746.	3.4	110
56	Anthrax toxin rafts into cells. Journal of Cell Biology, 2003, 160, 295-296.	5.2	11
57	Loss of Caveolae, Vascular Dysfunction, and Pulmonary Defects in Caveolin-1 Gene-Disrupted Mice. Science, 2001, 293, 2449-2452.	12.6	1,414
58	Distribution and Transport of Cholesterol in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2001, 12, 1725-1736.	2.1	160
59	Exogenous Administration of Gangliosides Displaces GPI-anchored Proteins from Lipid Microdomains in Living Cells. Molecular Biology of the Cell, 1999, 10, 3187-3196.	2.1	95
60	Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biology, 1999, 1, 127-129.	10.3	105
61	Membrane microdomains and caveolae. Current Opinion in Cell Biology, 1999, 11, 424-431.	5.4	547
62	Synthesis Of Labeled Glycosyl Phosphatidyl Inositol (GPI) Anchors. European Journal of Organic Chemistry, 1999, 1999, 2563-2571.	2.4	24
63	Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature, 1998, 394, 802-805.	27.8	524
64	Vascular Endothelial Growth Factor Induces Endothelial Fenestrations In Vitro. Journal of Cell Biology, 1998, 140, 947-959.	5.2	580
65	Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Current Biology, 1997, 7, 603-606.	3.9	156
66	Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Letters, 1996, 388, 143-149.	2.8	173
67	And still they are movingâ \in Dynamic properties of caveolae. FEBS Letters, 1996, 389, 52-54.	2.8	39
68	VIP21-Caveolin, a protein of thetrans-Golgi network and caveolae. FEBS Letters, 1994, 346, 88-91.	2.8	86
69	Chapter 11 Probing the Molecular Environment of Translocating Polypeptide Chains by Cross-Linking. Methods in Cell Biology, 1991, 34, 241-262.	1.1	32
70	Structure and biosynthesis of the signal-sequence receptor. FEBS Journal, 1990, 188, 439-445.	0.2	64
71	GTP interacts through its ribose and phosphate moieties with different subunits of the eukaryotic initiation factor eIF-2. FEBS Letters, 1989, 244, 323-327.	2.8	26
72	Photocrosslinking demonstrates proximity of a 34 kDa membrane protein to different portions of preprolactin during translocation through the endoplasmic reticulum. FEBS Letters, 1989, 257, 263-268.	2.8	66

#	Article	IF	CITATIONS
73	Signal recognition in protein translocation across the endoplasmic reticulum membrane. Biochemical Society Transactions, 1989, 17, 325-328.	3.4	7
74	tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. FEBS Journal, 1988, 172, 663-668.	0.2	49
75	A signal sequence receptor in the endoplasmic reticulum membrane. Nature, 1987, 328, 830-833.	27.8	304