Ivan Sadowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TORC1 signaling modulates Cdk8-dependent <i>GAL</i> gene expression in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 219, .	1.2	1
2	Diversity of small molecule HIVâ€1 latency reversing agents identified in low―and highâ€ŧhroughput small molecule screens. Medicinal Research Reviews, 2020, 40, 881-908.	5.0	23
3	Management of inadvertent template contamination in production of oligonucleotide qPCR reagents. BioTechniques, 2020, 69, 401-403.	0.8	1
4	Regulation of Skn7-dependent, oxidative stress-induced genes by the RNA polymerase II-CTD phosphatase, Fcp1, and Mediator kinase subunit, Cdk8, in yeast. Journal of Biological Chemistry, 2019, 294, 16080-16094.	1.6	9
5	Strategies to eradicate HIV from infected patients: elimination of latent provirus reservoirs. Cellular and Molecular Life Sciences, 2019, 76, 3583-3600.	2.4	77
6	Compounds producing an effective combinatorial regimen for disruption of <scp>HIV</scp> â€1 latency. EMBO Molecular Medicine, 2018, 10, 160-174.	3.3	25
7	HIV Provirus Stably Reproduces Parental Latent and Induced Transcription Phenotypes Regardless of the Chromosomal Integration Site. Journal of Virology, 2016, 90, 5302-5314.	1.5	18
8	Direct non-productive HIV-1 infection in a T-cell line is driven by cellular activation state and NFήB. Retrovirology, 2014, 11, 17.	0.9	37
9	A Doubly Fluorescent HIV-1 Reporter Shows that the Majority of Integrated HIV-1 Is Latent Shortly after Infection. Journal of Virology, 2013, 87, 4716-4727.	1.5	88
10	The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat026-bat026.	1.4	96
11	An Upstream YY1 Binding Site on the HIV-1 LTR Contributes to Latent Infection. PLoS ONE, 2013, 8, e77052.	1.1	33
12	Cdk8 Regulates Stability of the Transcription Factor Phd1 To Control Pseudohyphal Differentiation of Saccharomyces cerevisiae. Molecular and Cellular Biology, 2012, 32, 664-674.	1.1	40
13	Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter. Virology, 2011, 418, 57-66.	1.1	26
14	The Suv39H1 methyltransferase inhibitor chaetocin causes induction of integrated HIV-1 without producing a T cell response. FEBS Letters, 2011, 585, 3549-3554.	1.3	76
15	PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae. Database: the Journal of Biological Databases and Curation, 2010, 2010, bap026-bap026.	1.4	90
16	Dominant marker vectors for selecting yeast mating products. Yeast, 2008, 25, 595-599.	0.8	12
17	Specific interaction of TFIIâ€I with an upstream element on the HIVâ€I LTR regulates induction of latent provirus. FEBS Letters, 2008, 582, 3903-3908.	1.3	25
18	Factors Controlling Chromatin Organization and Nucleosome Positioning for Establishment and Maintenance of HIV Latency. Current HIV Research, 2008, 6, 286-295.	0.2	41

Ivan Sadowski

#	Article	IF	CITATIONS
19	Disintegrator vectors for single-copy yeast chromosomal integration. Yeast, 2007, 24, 447-455.	0.8	47
20	Induction of chromosomally integrated HIV-1 LTR requires RBF-2 (USF/TFII-I) and RAS/MAPK signaling. Virus Genes, 2007, 35, 215-223.	0.7	51
21	TFII-I Regulates Induction of Chromosomally Integrated Human Immunodeficiency Virus Type 1 Long Terminal Repeat in Cooperation with USF. Journal of Virology, 2005, 79, 4396-4406.	1.5	48
22	TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. European Journal of Cancer, 2005, 41, 2528-2536.	1.3	31
23	Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature, 2003, 421, 187-190.	13.7	144
24	Multiple Signals Regulate GAL Transcription in Yeast. Molecular and Cellular Biology, 2000, 20, 3880-3886.	1.1	69
25	Purification of RBF-2, a transcription factor with specificity for the most conservedcis-element of naturally occurring HIV-1 LTRs. Journal of Biomedical Science, 1999, 6, 320-332.	2.6	15
26	GAL4 Is Regulated by the RNA Polymerase II Holoenzyme–Associated Cyclin-Dependent Protein Kinase SRB10/CDK8. Molecular Cell, 1999, 3, 673-678.	4.5	128
27	Naturally Occurring Human Immunodeficiency Virus Type 1 Long Terminal Repeats Have a Frequently Observed Duplication That Binds RBF-2 and Represses Transcription. Journal of Virology, 1998, 72, 6465-6474.	1.5	38
28	Characterization of the Basal and Pheromone-Stimulated Phosphorylation States of Ste12p. FEBS Journal, 1997, 245, 241-251.	0.2	50
29	GAL4-VP16 is an unusually potent transcriptional activator. Nature, 1988, 335, 563-564.	13.7	1,433