
Alessandro Lorenzo Palma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perovskite solar cells and large area modules (100Âcm 2) based on an air flow-assisted PbI 2 blade coating deposition process. Journal of Power Sources, 2015, 277, 286-291.	7.8	332
2	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	17.4	196
3	Vertical TiO ₂ Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015, 9, 8420-8429.	14.6	174
4	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	16.0	166
5	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	17.4	125
6	Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio. IEEE Journal of Photovoltaics, 2017, 7, 1674-1680.	2.5	116
7	Efficient fully laser-patterned flexible perovskite modules and solar cells based on low-temperature solution-processed SnO2/mesoporous-TiO2 electron transport layers. Nano Research, 2018, 11, 2669-2681.	10.4	116
8	High efficiency photovoltaic module based on mesoscopic organometal halide perovskite. Progress in Photovoltaics: Research and Applications, 2016, 24, 436-445.	8.1	112
9	Laser Processing in the Manufacture of Dye ensitized and Perovskite Solar Cell Technologies. ChemElectroChem, 2016, 3, 9-30.	3.4	67
10	Doping Strategy for Efficient and Stable Triple Cation Hybrid Perovskite Solar Cells and Module Based on Poly(3â€hexylthiophene) Hole Transport Layer. Small, 2019, 15, e1904399.	10.0	55
11	Fabrication and Morphological Characterization of High-Efficiency Blade-Coated Perovskite Solar Modules. ACS Applied Materials & Interfaces, 2019, 11, 25195-25204.	8.0	53
12	Laser-patterned functionalized CVD-graphene as highly transparent conductive electrodes for polymer solar cells. Nanoscale, 2017, 9, 62-69.	5.6	50
13	Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11%. Solar Energy Materials and Solar Cells, 2018, 185, 136-144.	6.2	49
14	Mesoscopic Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 26989-26997.	8.0	44
15	Sprayed organic photovoltaic cells and mini-modules based on chemical vapor deposited graphene as transparent conductive electrode. Carbon, 2018, 129, 878-883.	10.3	41
16	Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach. Nano Energy, 2020, 69, 104441.	16.0	37
17	Laserâ€Processed Perovskite Solar Cells and Modules. Solar Rrl, 2020, 4, 1900432.	5.8	34
18	Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO ₄ laser patterned rutile TiO ₂ nanorods. Nanotechnology, 2015, 26, 494002.	2.6	26

#	Article	IF	CITATIONS
19	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 035007.	4.4	23
20	A Comparative Evaluation of Sustainable Binders for Environmentally Friendly Carbon-Based Supercapacitors. Nanomaterials, 2022, 12, 46.	4.1	20
21	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. ACS Applied Energy Materials, 2021, 4, 98-110.	5.1	9
22	Perovskite solar cells. , 2020, , 163-228.		8
23	Hybrid perovskite as substituent of indium and gallium in light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 958-961.	0.8	5
24	Improving the Performance of Printable Carbon Electrodes by Femtosecond Laser Treatment. Journal of Carbon Research, 2020, 6, 48.	2.7	3