
Tatsuya Okubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3200182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids. Journal of the American Chemical Society, 2006, 128, 13664-13665.	6.6	406
2	Densification of nanostructured titania assisted by a phase transformation. Nature, 1992, 358, 48-51.	13.7	332
3	A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 2012, 134, 11542-11549.	6.6	272
4	Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. Journal of Physical Chemistry C, 2011, 115, 744-750.	1.5	172
5	Mechanism of Formation of Uniform-Sized Silica Nanospheres Catalyzed by Basic Amino Acids. Chemistry of Materials, 2009, 21, 3719-3729.	3.2	169
6	Critical Factors in the Seedâ€Assisted Synthesis of Zeolite Beta and "Green Beta―from OSDAâ€Free Na ⁺ –Aluminosilicate Gels. Chemistry - an Asian Journal, 2010, 5, 2182-2191.	1.7	158
7	Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 2014, 189, 22-30.	2.2	156
8	High Efficiency Near-IR Emission of Nd(III) Based on Low-Vibrational Environment in Cages of Nanosized Zeolites. Journal of the American Chemical Society, 2000, 122, 8583-8584.	6.6	148
9	Structure-Directing Behaviors of Tetraethylammonium Cations toward Zeolite Beta Revealed by the Evolution of Aluminosilicate Species Formed during the Crystallization Process. Journal of the American Chemical Society, 2015, 137, 14533-14544.	6.6	140
10	Morphology and chemical state of Co?Mo catalysts for growth ofBsingle-walled carbon nanotubes vertically aligned on quartz substrates. Journal of Catalysis, 2004, 225, 230-239.	3.1	133
11	Mesoporous Silica Nanoparticles with Remarkable Stability and Dispersibility for Antireflective Coatings. Chemistry of Materials, 2010, 22, 12-14.	3.2	131
12	Overview of Nanoparticle Array Formation by Wet Coating. Journal of Nanoparticle Research, 2003, 5, 5-15.	0.8	129
13	Aluminosilicate Species in the Hydrogel Phase Formed during the Aging Process for the Crystallization of FAU Zeolite. Chemistry of Materials, 2003, 15, 2661-2667.	3.2	127
14	Formation of Hierarchically Organized Zeolites by Sequential Intergrowth. Angewandte Chemie - International Edition, 2013, 52, 3355-3359.	7.2	124
15	Widening Synthesis Bottlenecks: Realization of Ultrafast and Continuousâ€Flow Synthesis of Highâ€6ilica Zeolite SSZâ€13 for NO _{<i>x</i>} Removal. Angewandte Chemie - International Edition, 2015, 54, 5683-5687.	7.2	121
16	Preparation of Supported Mesoporous Silica Layers in a Continuous Flow Cell. Chemistry of Materials, 1997, 9, 1505-1507.	3.2	119
17	Porous Siloxane–Organic Hybrid with Ultrahigh Surface Area through Simultaneous Polymerization–Destruction of Functionalized Cubic Siloxane Cages. Journal of the American Chemical Society, 2011, 133, 13832-13835.	6.6	115
18	Organic–Inorganic Mesoporous Nanocarriers Integrated with Biogenic Ligands. Small, 2007, 3, 1740-1744.	5.2	114

#	Article	IF	CITATIONS
19	Two-Phase Synthesis of Monodisperse Silica Nanospheres with Amines or Ammonia Catalyst and Their Controlled Self-Assembly. ACS Applied Materials & Interfaces, 2011, 3, 1538-1544.	4.0	107
20	ZrO2 promoted with sulfate, iron and manganese: a solid superacid catalyst capable of low temperaturen-butane isomerization. Catalysis Letters, 1994, 25, 21-28.	1.4	102
21	Seed-assisted, OSDA-free synthesis of MTW-type zeolite and "Green MTW―from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 2012, 147, 149-156.	2.2	102
22	Photoinduced Bending of Self-Assembled Azobenzene–Siloxane Hybrid. Journal of the American Chemical Society, 2015, 137, 15434-15440.	6.6	99
23	Silica Sodalite without Occluded Organic Matters by Topotactic Conversion of Lamellar Precursor. Journal of the American Chemical Society, 2008, 130, 15780-15781.	6.6	94
24	Hybrid Porous Materials with High Surface Area Derived from Bromophenylethenylâ€Functionalized Cubic Siloxaneâ€Based Building Units. Chemistry - A European Journal, 2010, 16, 6006-6014.	1.7	94
25	A new approach to the determination of atomic-architecture of amorphous zeolite precursors by high-energy X-ray diffraction technique. Physical Chemistry Chemical Physics, 2006, 8, 224-227.	1.3	88
26	Gas sensing with zeolite-coated quartz crystal microbalances—principal component analysis approach. Sensors and Actuators B: Chemical, 2002, 86, 26-33.	4.0	87
27	In situ Small-Angle and Wide-Angle X-ray Scattering Investigation on Nucleation and Crystal Growth of Nanosized Zeolite A. Chemistry of Materials, 2007, 19, 1906-1917.	3.2	87
28	Energy Analysis of Aluminosilicate Zeolites with Comprehensive Ranges of Framework Topologies, Chemical Compositions, and Aluminum Distributions. Journal of the American Chemical Society, 2016, 138, 6184-6193.	6.6	84
29	Microporous Hybrid Polymer with a Certain Crystallinity Built from Functionalized Cubic Siloxane Cages as a Singular Building Unit. Chemistry of Materials, 2010, 22, 4841-4843.	3.2	80
30	Linking synthesis and structure descriptors from a large collection of synthetic records of zeolite materials. Nature Communications, 2019, 10, 4459.	5.8	74
31	Effective Fabrication of Catalysts from Large-Pore, Multidimensional Zeolites Synthesized without Using Organic Structure-Directing Agents. Chemistry of Materials, 2014, 26, 1250-1259.	3.2	72
32	Ultrafast synthesis of zeolites: breakthrough, progress and perspective. Inorganic Chemistry Frontiers, 2019, 6, 14-31.	3.0	72
33	OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 2012, 163, 282-290.	2.2	71
34	Hydrothermal Synthesis and Characterization of Zeolites. Chemistry Letters, 2005, 34, 276-281.	0.7	66
35	Single gas permeation through porous glass modified with tetraethoxysilane. AICHE Journal, 1989, 35, 845-848.	1.8	64
36	Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 2010, 39, 730-731.	0.7	64

#	Article	IF	CITATIONS
37	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 19669-19674.	7.2	63
38	Organicâ€Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q ⁴ (<i>n</i> Al) Si Speciation. Angewandte Chemie - International Edition, 2017, 56, 13366-13371.	7.2	62
39	Phase selection of FAU and LTA zeolites by controlling synthesis parameters. Microporous and Mesoporous Materials, 2006, 89, 227-234.	2.2	60
40	Positive Temperature Coefficient of Resistivity in Ba1-xSrxPb1+yO3-8 Ceramics. Journal of the American Ceramic Society, 1993, 76, 2053-2058.	1.9	59
41	Continuous flow synthesis of ZSM-5 zeolite on the order of seconds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14267-14271.	3.3	59
42	TPA ⁺ -Mediated Conversion of Silicon Wafer into Preferentially-Oriented MFI Zeolite Film under Steaming. Chemistry of Materials, 2007, 19, 4120-4122.	3.2	58
43	Single-walled carbon nanotubes catalytically grown from mesoporous silica thin film. Chemical Physics Letters, 2003, 375, 393-398.	1.2	56
44	Crystal growth of faujasite observed by atomic force microscopy. Microporous and Mesoporous Materials, 2004, 70, 7-13.	2.2	56
45	SSZ-33:Â A Promising Material for Use as a Hydrocarbon Trap. Journal of Physical Chemistry B, 2004, 108, 13059-13061.	1.2	56
46	A comparative study of zeolites SSZ-33 and MCM-68 for hydrocarbon trap applications. Microporous and Mesoporous Materials, 2006, 96, 210-215.	2.2	56
47	One-minute synthesis of crystalline microporous aluminophosphate (AlPO4-5) by combining fast heating with a seed-assisted method. Chemical Communications, 2014, 50, 2526.	2.2	56
48	Morphology Control of Mesoporous Silica Particles. Journal of Physical Chemistry C, 2007, 111, 11168-11173.	1.5	55
49	Directing Aluminum Atoms into Energetically Favorable Tetrahedral Sites in a Zeolite Framework by Using Organic Structureâ€Directing Agents. Angewandte Chemie - International Edition, 2018, 57, 3742-3746.	7.2	55
50	Heteroepitaxial Growth of a Zeolite. Angewandte Chemie - International Edition, 2001, 40, 1069-1071.	7.2	53
51	The Photocurrent of Dye-Sensitized Solar Cells Enhanced by the Surface Plasmon Resonance. Journal of Chemical Engineering of Japan, 2004, 37, 645-649.	0.3	53
52	Direct Hydrothermal Synthesis of Hierarchically Porous Siliceous Zeolite by Using Alkoxysilylated Nonionic Surfactant. Langmuir, 2010, 26, 2731-2735.	1.6	52
53	Tracking the rearrangement of atomic configurations during the conversion of FAU zeolite to CHA zeolite. Chemical Science, 2019, 10, 8533-8540.	3.7	52
54	Investigation on the Drying Induced Phase Transformation of Mesoporous Silica; A Comprehensive Understanding toward Mesophase Determination. Journal of the American Chemical Society, 2004, 126, 10937-10944.	6.6	51

#	Article	IF	CITATIONS
55	Photoluminescence sidebands of carbon nanotubes below the bright singlet excitonic levels. Physical Review B, 2009, 79, .	1.1	51
56	Synthesis of Hydrophobic Molecular Sieves by Hydrothermal Treatment with Acetic Acid. Chemistry of Materials, 2001, 13, 1041-1050.	3.2	50
57	Heteroepitaxial Growth of a Zeolite Film with a Patterned Surface-Texture. Journal of the American Chemical Society, 2003, 125, 12388-12389.	6.6	49
58	A top-down methodology for ultrafast tuning of nanosized zeolites. Chemical Communications, 2015, 51, 12567-12570.	2.2	49
59	Recent progress in the improvement of hydrothermal stability of zeolites. Chemical Science, 2021, 12, 7677-7695.	3.7	49
60	Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. Reaction Chemistry and Engineering, 2019, 4, 1699-1720.	1.9	48
61	Extremely Stable Zeolites Developed via Designed Liquid-Mediated Treatment. Journal of the American Chemical Society, 2020, 142, 3931-3938.	6.6	48
62	Location of Alkali Ions and their Relevance to Crystallization of Low Silica X Zeolite. Crystal Growth and Design, 2010, 10, 3471-3479.	1.4	46
63	Ultrafast Continuous-Flow Synthesis of Crystalline Microporous Aluminophosphate AlPO ₄ -5. Chemistry of Materials, 2014, 26, 2327-2331.	3.2	46
64	Porous inorganic–organic hybrid polymers derived from cyclic siloxane building blocks: Effects of substituting groups on mesoporous structures. Microporous and Mesoporous Materials, 2019, 278, 212-218.	2.2	46
65	Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method. Microporous and Mesoporous Materials, 2018, 255, 192-199.	2.2	45
66	Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 589-596.	0.9	43
67	Incorporation process of Ti species into the framework of MFI type zeolite. Microporous and Mesoporous Materials, 2008, 112, 202-210.	2.2	42
68	Spectroscopic study on strongly luminescent Nd(iii) exchanged zeolite: TMA+-containing FAU type zeolite as a suitable host for ship-in-bottle synthesis. Journal of Materials Chemistry, 2002, 12, 1748-1753.	6.7	41
69	Factors Governing the Formation of Hierarchically and Sequentially Intergrown MFI Zeolites by Using Simple Diquaternary Ammonium Structure-Directing Agents. Chemistry of Materials, 2016, 28, 8997-9007.	3.2	41
70	Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica. Journal of Solid State Chemistry, 2008, 181, 957-963.	1.4	40
71	Cooperative Effect of Sodium and Potassium Cations on Synthesis of Ferrierite. Topics in Catalysis, 2009, 52, 67-74.	1.3	39
72	Seedâ€Assisted, Oneâ€Pot Synthesis of Hollow Zeolite Beta without Using Organic Structureâ€Directing Agents. Chemistry - an Asian Journal, 2013, 8, 1419-1427.	1.7	39

#	Article	IF	CITATIONS
73	Correlation between nucleation site density and residual diamond dust density in diamond film deposition. Applied Physics Letters, 1994, 65, 1192-1194.	1.5	38
74	Self-Assembling Process of Colloidal Particles into Two-Dimensional Arrays Induced by Capillary Immersion Force: A Simulation Study With Discrete Element Method. Journal of Nanoparticle Research, 2003, 5, 103-110.	0.8	38
75	Synthesis and Structure of Ultrafine Zeolite KL (LTL) Crystallites and their Use for Thin Film Zeolite Processing. Materials Research Society Symposia Proceedings, 1994, 371, 21.	0.1	37
76	Evolution of Pore Structure in Microporous Silica Membranes: Sol-Gel Procedures and Strategies. Advanced Materials, 1998, 10, 249-252.	11.1	37
77	Intrazeolite Nanostructure of Nd(III) Complex Giving Strong Near-Infrared Luminescence. Journal of Physical Chemistry B, 2003, 107, 11302-11306.	1.2	37
78	Gas permeation of porous organic/inorganic hybrid membranes. Journal of Sol-Gel Science and Technology, 1995, 5, 127-134.	1.1	36
79	Ultrafast synthesis of silicalite-1 using a tubular reactor with a feature of rapid heating. Microporous and Mesoporous Materials, 2016, 223, 140-144.	2.2	36
80	A Collective Case Screening of the Zeolites made in Japan for High Performance NH3-SCR of NOx. Bulletin of the Chemical Society of Japan, 2018, 91, 355-361.	2.0	36
81	Early stages of MFI film formation. Microporous and Mesoporous Materials, 1998, 21, 325-332.	2.2	35
82	Multiscale Simulation of Two-Dimensional Self-Organization of Nanoparticles in Liquid Film. Japanese Journal of Applied Physics, 2004, 43, 4434-4442.	0.8	35
83	Ultrafast, OSDA-free synthesis of mordenite zeolite. CrystEngComm, 2017, 19, 632-640.	1.3	35
84	A new synthesis of well-dispersed, core–shell Ag@SiO2 mesoporous nanoparticles using amino acids and sugars. Journal of Materials Chemistry B, 2013, 1, 2451.	2.9	34
85	Mesoporogen-free synthesis of hierarchically porous ZSM-5 below 100°C. Microporous and Mesoporous Materials, 2016, 226, 344-352.	2.2	34
86	Crystallization behavior of zeolite beta with balanced incorporation of silicon and aluminum synthesized from alkali metal cation-free mixture. Microporous and Mesoporous Materials, 2008, 116, 188-195.	2.2	33
87	Cu-Erionite Zeolite Achieves High Yield in Direct Oxidation of Methane to Methanol by Isothermal Chemical Looping. Chemistry of Materials, 2020, 32, 1448-1453.	3.2	33
88	In situ observation of homogeneous nucleation of nanosized zeolite A. Physical Chemistry Chemical Physics, 2006, 8, 1335.	1.3	32
89	Effect of Lithium Doping into MIL-53(Al) through Thermal Decomposition of Anion Species on Hydrogen Adsorption. Journal of Physical Chemistry C, 2012, 116, 10260-10265.	1.5	32
90	Ultrafast and Continuous Flow Synthesis of Silicoaluminophosphates. Chemistry of Materials, 2016, 28, 4840-4847.	3.2	32

#	Article	IF	CITATIONS
91	Reaction Kinetics Regulated Formation of Short-Range Order in an Amorphous Matrix during Zeolite Crystallization. Journal of the American Chemical Society, 2021, 143, 10986-10997.	6.6	32
92	Studies on mesoporous silica films synthesized using F127, a triblock co-polymer. Microporous and Mesoporous Materials, 2004, 75, 51-59.	2.2	31
93	An organic functional group introduced to Si(1 1 1) via siliconî—,carbon bond: a liquid-phase approach. Applied Surface Science, 2001, 171, 252-256.	3.1	30
94	Antibacterial Activity of Silver‣oaded "Green Zeolites― European Journal of Inorganic Chemistry, 2012, 2012, 3398-3402.	1.0	30
95	Fabrication of hierarchical Lewis acid Sn-BEA with tunable hydrophobicity for cellulosic sugar isomerization. Microporous and Mesoporous Materials, 2019, 278, 387-396.	2.2	30
96	Alkali Carbonate Stabilized on Aluminosilicate via Solid Ion Exchange as a Catalyst for Diesel Soot Combustion. Journal of Physical Chemistry C, 2011, 115, 14892-14898.	1.5	29
97	Stabilization of bare divalent Fe(II) cations in Al-rich beta zeolites for superior NO adsorption. Journal of Catalysis, 2014, 315, 1-5.	3.1	29
98	Broadening the Applicable Scope of Seed-Directed, Organic Structure-Directing Agent-Free Synthesis of Zeolite to Zincosilicate Components: A Case of VET-Type Zincosilicate Zeolites. Chemistry of Materials, 2014, 26, 1957-1966.	3.2	29
99	Ultratrace Measurement of Acetone from Skin Using Zeolite: Toward Development of a Wearable Monitor of Fat Metabolism. Analytical Chemistry, 2015, 87, 7588-7594.	3.2	29
100	Downsizing AFX Zeolite Crystals to Nanoscale by a Postmilling Recrystallization Method. Crystal Growth and Design, 2016, 16, 3389-3394.	1.4	29
101	Seed-directed, rapid synthesis of MAZ-type zeolites without using organic structure-directing agent. Microporous and Mesoporous Materials, 2014, 186, 21-28.	2.2	28
102	Snâ€Beta Zeolite Catalysts with High Sn Contents Prepared from Sn–Si Mixed Oxide Composites. ChemNanoMat, 2015, 1, 155-158.	1.5	28
103	Seedâ€Assisted Synthesis of MWWâ€Type Zeolite with Organic Structureâ€Directing Agentâ€Free Naâ€Aluminosilicate Gel System. Chemistry - an Asian Journal, 2017, 12, 530-542.	1.7	27
104	Organicâ€Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q 4 (n Al) Si Speciation. Angewandte Chemie, 2017, 129, 13551-13556.	1.6	27
105	Understanding the high hydrothermal stability and NH3-SCR activity of the fast-synthesized ERI zeolite. Journal of Catalysis, 2020, 391, 346-356.	3.1	27
106	Carbonateâ€Promoted Catalytic Activity of Potassium Cations for Soot Combustion by Gaseous Oxygen. ChemCatChem, 2014, 6, 479-484.	1.8	26
107	Comparative Study on the Different Interaction Pathways between Amorphous Aluminosilicate Species and Organic Structure-Directing Agents Yielding Different Zeolite Phases. Journal of Physical Chemistry C, 2017, 121, 24324-24334.	1.5	26
108	Improvement of surface transport property by surface modification. AICHE Journal, 1988, 34, 1031-1033.	1.8	25

#	Article	IF	CITATIONS
109	Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. Journal of Colloid and Interface Science, 2012, 385, 41-47.	5.0	25
110	High-temperature catalyst supports and ceramic membranes: Metastability and particle packing. AICHE Journal, 1997, 43, 2710-2714.	1.8	24
111	Ionic conductivity of single-crystal ferrierite. Microporous and Mesoporous Materials, 2000, 40, 283-288.	2.2	24
112	Spontaneous formation of large-area monolayers of well-ordered nanoparticles via a wet-coating process. Journal of Nanoparticle Research, 2004, 6, 479-487.	0.8	24
113	Hydrocarbon Reformer Trap by Use of Transition Metal Oxide-Incorporated Beta Zeolites. Catalysis Letters, 2007, 118, 72-78.	1.4	24
114	Synthesis of zeolites using highly amphiphilic cations as organic structure-directing agents by hydrothermal treatment of a dense silicate gel. Chemical Communications, 2014, 50, 1330-1333.	2.2	24
115	Tailoring the Subnano Silica Structure via Fluorine Doping for Development of Highly Permeable CO ₂ Separation Membranes. ChemNanoMat, 2016, 2, 264-267.	1.5	24
116	Ultrafast synthesis of high-silica erionite zeolites with improved hydrothermal stability. Chemical Communications, 2017, 53, 6796-6799.	2.2	24
117	Ultrafast synthesis of *BEA zeolite without the aid of aging pretreatment. Microporous and Mesoporous Materials, 2018, 268, 1-8.	2.2	24
118	Testing the limits of zeolite structural flexibility: ultrafast introduction of mesoporosity in zeolites. Journal of Materials Chemistry A, 2020, 8, 735-742.	5.2	24
119	Synthesis of a Three-Dimensional Cubic Mesoporous Silica Monolith Employing an Organic Additive through an Evaporation-Induced Self-Assembly Process. Langmuir, 2006, 22, 6391-6397.	1.6	23
120	Phase and orientation control of mesoporous silica thin film via phase transformation. Thin Solid Films, 2006, 495, 11-17.	0.8	23
121	Diolâ€Linked Microporous Networks of Cubic Siloxane Cages. Chemistry - A European Journal, 2013, 19, 1700-1705.	1.7	23
122	Synthesis of ordered photoresponsive azobenzene–siloxane hybrids by self-assembly. Journal of Materials Chemistry C, 2013, 1, 6989.	2.7	23
123	Structural Evolution of Amorphous Precursors toward Crystalline Zeolites Visualized by an in Situ X-ray Pair Distribution Function Approach. Journal of Physical Chemistry C, 2019, 123, 28419-28426.	1.5	23
124	Surface diffusion on modified surface of porous glass Journal of Chemical Engineering of Japan, 1987, 20, 590-597.	0.3	22
125	Effects of silicon sources on the formation of nanosized LTA: An in situ small angle X-ray scattering and wide angle X-ray scattering study. Microporous and Mesoporous Materials, 2007, 101, 134-141.	2.2	22
126	Synthesis of hydrophobic siliceous ferrierite by using pyridine and sodium fluoride. Microporous and Mesoporous Materials, 2013, 181, 154-159.	2.2	22

#	Article	IF	CITATIONS
127	Organic structure-directing agent-free synthesis of NES-type zeolites using EU-1 seed crystals. Microporous and Mesoporous Materials, 2015, 215, 191-198.	2.2	22
128	Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst. Microporous and Mesoporous Materials, 2019, 277, 197-202.	2.2	22
129	Multi-objective <i>de novo</i> molecular design of organic structure-directing agents for zeolites using nature-inspired ant colony optimization. Chemical Science, 2020, 11, 8214-8223.	3.7	22
130	Crystal Phases of TiO2 Ultrafine Particles Prepared by Laser Ablation of Solid Rods. Journal of Nanoparticle Research, 2002, 4, 215-219.	0.8	21
131	Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer. Journal of Applied Physics, 2003, 94, 3492-3497.	1.1	20
132	Changes in the medium-range order during crystallization of aluminosilicate zeolites characterized by high-energy X-ray diffraction technique. Journal of the Ceramic Society of Japan, 2009, 117, 277-282.	0.5	20
133	Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method. Microporous and Mesoporous Materials, 2009, 124, 123-130.	2.2	19
134	Mechanistic Study on the Synthesis of a Porous Zincosilicate VPI-7 Containing Three-Membered Rings. Journal of Physical Chemistry C, 2011, 115, 443-446.	1.5	19
135	Zeolite Surface As a Catalyst Support Material for Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24231-24237.	1.5	19
136	Effect of organic groups on hydrogen adsorption properties of periodic mesoporous organosilicas. Microporous and Mesoporous Materials, 2012, 147, 194-199.	2.2	19
137	Preparation and characterization of Silicalite-1 zeolites with high manganese contents from mechanochemically pretreated reactants. Journal of Materials Chemistry A, 2015, 3, 6215-6222.	5.2	19
138	"Super Hydrocarbon Reformer Trap―for the Complete Oxidation of Toluene Using Ironâ€Exchanged βâ€Zeolite with a Low Silicon/Aluminum Ratio. ChemCatChem, 2016, 8, 2516-2524.	1.8	19
139	Ultrafast synthesis of AFX-Type zeolite with enhanced activity in the selective catalytic reduction of NOx and hydrothermal stability. RSC Advances, 2019, 9, 16790-16796.	1.7	19
140	GUS-1: a mordenite-like molecular sieve with the 12-ring channel of ZSM-12. Chemical Communications, 2000, , 2363-2364.	2.2	18
141	Hydrothermal synthesis and structure of ASU-14 topological framework by using ethylenediamine as a structure-directing agent. Microporous and Mesoporous Materials, 2004, 70, 1-6.	2.2	18
142	A novel layered bimetallic phosphite intercalating with organic amines: Synthesis and characterization of Co(H2O)4Zn4(HPO3)6·C2N2H10. Journal of Solid State Chemistry, 2006, 179, 723-728.	1.4	18
143	Photoelectric properties of nano-ZnO fabricated in mesoporous silica film. Materials Letters, 2007, 61, 3179-3184.	1.3	18
144	Plate-like precursors formed in crystallization process of ferrierite from (Na, K)-aluminosilicate system. Microporous and Mesoporous Materials, 2012, 158, 204-208.	2.2	18

#	Article	IF	CITATIONS
145	Facile Synthesis of Hydroxyâ€Modified MOFâ€5 for Improving the Adsorption Capacity of Hydrogen by Lithium Doping. Chemistry - an Asian Journal, 2013, 8, 2801-2806.	1.7	18
146	Preparation of core–shell mesoporous silica nanoparticles with bimodal pore structures by regrowth method. Journal of Colloid and Interface Science, 2015, 448, 57-64.	5.0	18
147	Remarkable enhancement of catalytic activity and selectivity of MSE-type zeolite by post-synthetic modification. Catalysis Today, 2015, 243, 85-91.	2.2	18
148	Surfactant-free synthesis of hollow mesoporous organosilica nanoparticles with controllable particle sizes and diversified organic moieties. RSC Advances, 2016, 6, 90435-90445.	1.7	18
149	Preparation and Gas Permeation Properties of Fluorine–Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size. ACS Applied Materials & Interfaces, 2017, 9, 24625-24633.	4.0	18
150	The Hydrothermal Synthesis and Crystal Structure of (H2O)[Ge5O10] and [(CH3)4N][Ge10O20OH], Two Novel Porous Germanates. Chemistry Letters, 2004, 33, 74-75.	0.7	17
151	Millimeter-sized sodalite single crystals grown under high-temperature, high-pressure hydrothermal conditions. Microporous and Mesoporous Materials, 2001, 42, 229-234.	2.2	16
152	Synthesis of Mesoporous Silica Thin Film with Three-dimensional Accessible Pore Structure. Chemistry Letters, 2004, 33, 1078-1079.	0.7	16
153	Versatile Fabrication of Distorted Cubic Mesoporous Silica Film Using CTAB Together with a Hydrophobic Organic Additive. Journal of Physical Chemistry B, 2006, 110, 9751-9754.	1.2	16
154	Synthesis and characterization of aluminium containing CIT-1 and their structure–property relationship to hydrocarbon trap performance. Microporous and Mesoporous Materials, 2010, 129, 126-135.	2.2	16
155	Organic-free synthesis of zincoaluminosilicate zeolites from homogeneous gels prepared by a co-precipitation method. Dalton Transactions, 2017, 46, 10837-10846.	1.6	16
156	Temperature-controlled, two-stage synthesis of ZSM-5 zeolite nanoparticles with Al atoms tetrahedrally coordinated in the framework. Microporous and Mesoporous Materials, 2018, 270, 200-203.	2.2	16
157	Ultrafast surfactant-templating of *BEA zeolite: An efficient catalyst for the cracking of polyethylene pyrolysis vapours. Chemical Engineering Journal, 2021, 412, 128566.	6.6	16
158	Nanoparticle Vesicles with Controllable Surface Topographies through Block Copolymer-Mediated Self-Assembly of Silica Nanospheres. Langmuir, 2015, 31, 13214-13220.	1.6	15
159	Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals. Scientific Reports, 2016, 6, 29210.	1.6	15
160	Synthesis of New Microporous Zincosilicates with CHA Zeolite Topology as Efficient Platforms for Ionâ€Exchange of Divalent Cations. Chemistry - A European Journal, 2018, 24, 808-812.	1.7	15
161	Role of sodium cation during aging process in the synthesis of LEV-type zeolite. Microporous and Mesoporous Materials, 2019, 284, 82-89.	2.2	15
162	Understanding the Nucleation and Crystal Growth of Zeolites: A Case Study on the Crystallization of ZSM-5 from a Hydrogel System Under Ultrasonication. Journal of Physical Chemistry C, 2020, 124, 11516-11524.	1.5	15

#	Article	IF	CITATIONS
163	Unique crystallization behavior in zeolite synthesis under external high pressures. Chemical Communications, 2020, 56, 2811-2814.	2.2	15
164	Self-assembly of water-dispersed gold nanoparticles stabilized by a thiolated glycol derivative. Journal of Nanoparticle Research, 2005, 7, 187-193.	0.8	14
165	Rational seed-directed synthesis of MSE-type zeolites using a simple organic structure-directing agent by extending the composite building unit hypothesis. Microporous and Mesoporous Materials, 2017, 245, 1-7.	2.2	14
166	Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering. Journal of Physical Chemistry Letters, 2018, 9, 1778-1782.	2.1	14
167	Directing Aluminum Atoms into Energetically Favorable Tetrahedral Sites in a Zeolite Framework by Using Organic Structureâ€Directing Agents. Angewandte Chemie, 2018, 130, 3804-3808.	1.6	14
168	Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure. Microporous and Mesoporous Materials, 2018, 271, 33-40.	2.2	14
169	Zeolite Crystallization Triggered by Intermediate Stirring. Journal of Physical Chemistry C, 2019, 123, 20304-20313.	1.5	14
170	Insights into the ion-exchange properties of Zn(<scp>ii</scp>)-incorporated MOR zeolites for the capture of multivalent cations. Physical Chemistry Chemical Physics, 2019, 21, 4015-4021.	1.3	14
171	Water-Dispersible Triplet–Triplet Annihilation Photon Upconversion Particle: Molecules Integrated in Hydrophobized Two–Dimensional Interlayer Space of Montmorillonite and Their Application for Photocatalysis in the Aqueous Phase. ACS Applied Materials & Interfaces, 2020, 12, 7021-7029.	4.0	14
172	Synthetic and natural MOR zeolites as high-capacity adsorbents for the removal of nitrous oxide. Chemical Communications, 2021, 57, 1312-1315.	2.2	14
173	Synthesis of a new molecular sieve using DABCO-based structure-directing agent. Catalysis Today, 2002, 74, 271-279.	2.2	13
174	From Charge Density Mismatch to a Simplified, More Efficient Seed-Assisted Synthesis of UZM-4. Chemistry of Materials, 2013, 25, 2603-2609.	3.2	13
175	Azobenzene–siloxane hybrids with lamellar structures from bridge-type alkoxysilyl precursors. RSC Advances, 2014, 4, 25319-25325.	1.7	13
176	Downsizing the K-CHA zeolite by a postmilling-recrystallization method for enhanced base-catalytic performance. New Journal of Chemistry, 2016, 40, 492-496.	1.4	13
177	Formation of a dense non-crystalline layer on the surface of zeolite Y crystals under high-temperature steaming conditions. Microporous and Mesoporous Materials, 2018, 268, 77-83.	2.2	13
178	Revealing scenarios of interzeolite conversion from FAU to AEI through the variation of starting materials. Physical Chemistry Chemical Physics, 2022, 24, 4136-4146.	1.3	13
179	Hydrothermal growth of millimeter-sized aluminosilicate sodalite single crystals in noble metal capsules. Journal of Materials Research, 1998, 13, 891-895.	1.2	12
180	Comparative study of direct methylation of benzene with methane on cobalt-exchanged ZSM-5 and ZSM-11 zeolites. Applied Catalysis A: General, 2020, 601, 117661.	2.2	12

#	Article	IF	CITATIONS
181	Crystal Growth Behavior of Zeolites Elucidated by Atomic Force Microscopy. Journal of Chemical Engineering of Japan, 2004, 37, 669-674.	0.3	11
182	Tri(quaternary ammonium) Surfactant with a Benzene Core as a Novel Template for Synthesis of Ordered Porous Silica. Chemistry Letters, 2010, 39, 236-237.	0.7	11
183	Supported and Free-Standing Sulfonic Acid Functionalized Mesostructured Silica Films with High Proton Conductivity. European Journal of Inorganic Chemistry, 2010, 2010, 3993-3999.	1.0	11
184	Crystallinity of large single crystals of FAU-type zeolites with a wide range of Si/Al ratios. Journal of Porous Materials, 2011, 18, 305-317.	1.3	11
185	Ring assembly of silica nanospheres mediated by amphiphilic block copolymers with oxyethylene moieties. Polymer Journal, 2015, 47, 128-135.	1.3	11
186	Crystallization of a Novel Germanosilicate ECNUâ€16 Provides Insights into the Spaceâ€Filling Effect on Zeolite Crystal Symmetry. Chemistry - A European Journal, 2018, 24, 9247-9253.	1.7	11
187	Characterization of ESR Active Species on Lithium Chloride-Modified Mesoporous Silica. Journal of Physical Chemistry B, 2005, 109, 8574-8579.	1.2	10
188	Facile Synthesis of Well-dispersed Hollow Mesoporous Silica Nanoparticles Using Iron Oxide Nanoparticles as Template. Chemistry Letters, 2013, 42, 316-317.	0.7	10
189	Tracking the crystallization behavior of high-silica FAU during AEI-type zeolite synthesis using acid treated FAU-type zeolite. RSC Advances, 2021, 11, 23082-23089.	1.7	10
190	[Ge9O14(OH)12](C6N2H16)2ïį½H2O: A Novel Germanate with Ge?O Helical Chains Formed by Hydrothermal Synthesis that Can Separatetrans andcis Isomers in Situ. European Journal of Inorganic Chemistry, 2004, 2004, 4547-4549.	1.0	9
191	Investigation on specific adsorption of hydrogen on lithium-doped mesoporous silica. Adsorption, 2011, 17, 211-218.	1.4	9
192	Integrated modeling of agricultural and industrial processes within life cycle design for environment. Computer Aided Chemical Engineering, 2016, 38, 1947-1952.	0.3	9
193	Fast Synthesis of SSZ-24: A Pure Silica Zeolite with AFI Framework. Chemistry Letters, 2018, 47, 654-656.	0.7	9
194	Toward Efficient Synthesis of Chiral Zeolites: A Rational Strategy for Fluorideâ€Free Synthesis of STWâ€Type Zeolite. Angewandte Chemie - International Edition, 2020, 59, 20099-20103.	7.2	9
195	Broadening synthetic scope of SSZ-39 zeolite for NH3-SCR: A fast and direct route from amorphous starting materials. Microporous and Mesoporous Materials, 2022, 330, 111583.	2.2	9
196	Dealumination of small-pore zeolites through pore-opening migration process with the aid of pore-filler stabilization. Science Advances, 2022, 8, .	4.7	9
197	Crystal structures and spectroscopic properties of a new zinc phosphite cluster and an unexpected chainlike zinc phosphate obtained by hydrothermal reactions. Journal of Solid State Chemistry, 2007, 180, 981-987.	1.4	8
198	Alcohol washing as a way to stabilize the anatase phase of nanostructured titania through controlling particle packing. Journal of Materials Science, 2009, 44, 5944-5948.	1.7	8

#	Article	IF	CITATIONS
199	A combined top-down and bottom-up approach to fabricate silica films with bimodal porosity. Materials Letters, 2011, 65, 828-831.	1.3	8
200	Hierarchical porous silicavia solid-phase hydrolysis/polycondensation of cubic siloxane-based molecular units. Journal of Materials Chemistry A, 2013, 1, 671-676.	5.2	8
201	Addressing the viscosity challenge: ultrafast, stable-flow synthesis of zeolites with an emulsion method. Reaction Chemistry and Engineering, 2018, 3, 844-848.	1.9	8
202	Synthesis of string-bean-like anisotropic titania nanoparticles with basic amino acids. RSC Advances, 2014, 4, 9233.	1.7	7
203	Dendritic Silica Nanoparticles Synthesized by a Block Copolymer-Directed Seed-Regrowth Approach. Langmuir, 2015, 31, 1610-1614.	1.6	7
204	A photoresponsive azobenzene-bridged cubic silsesquioxane network. Journal of Sol-Gel Science and Technology, 2016, 79, 262-269.	1.1	7
205	Seed-directed Synthesis of CON-type Zeolite Using Tetraethylammonium Hydroxide as a Simple Organic Structure-directing Agent. Chemistry Letters, 2017, 46, 1419-1421.	0.7	7
206	Implementation Analysis of Bagasse Power Plants Considering Technology Options on Sugarcane Cultivars and Power Plants. Kagaku Kogaku Ronbunshu, 2018, 44, 113-122.	0.1	7
207	Increasing the ion-exchange capacity of MFI zeolites by introducing Zn to aluminosilicate frameworks. Dalton Transactions, 2018, 47, 9546-9553.	1.6	7
208	Ultrafast and continuous-flow synthesis of AFX zeolite <i>via</i> interzeolite conversion of FAU zeolite. Reaction Chemistry and Engineering, 2021, 6, 74-81.	1.9	7
209	Evidence of 29Si NMR paramagnetic shifts in rare-earth zeolite LSX. Chemical Communications, 2001, , 2112.	2.2	6
210	Determination of Silica Mesophases by Controlling Silicate Condensation in Liquid Phase. Chemistry Letters, 2004, 33, 734-735.	0.7	6
211	Effects of Particle Size on the Monolayer Structure of Nanoparticles Formed via a Wet-Coating Process. Journal of Chemical Engineering of Japan, 2005, 38, 564-570.	0.3	6
212	Fabrication of Mesoporous Silica Films via a Novel Route Providing a Wide Processing Time Window. Industrial & Engineering Chemistry Research, 2005, 44, 4156-4160.	1.8	6
213	Synthesis of AlPO-5 at Low Temperature by Controlling the Kinetics of Conversion of Aluminophosphate Phases. Chemistry Letters, 2012, 41, 889-891.	0.7	6
214	Synthesis of pure-silica ZSM-48 zeolite under mild hydrothermal condition with conventional amphiphilic cation by tuning the reactant gel composition. Journal of the Ceramic Society of Japan, 2013, 121, 575-577.	0.5	6
215	Crucial Factors for Seed-Directed Synthesis of CON-type Aluminoborosilicate Zeolites Using Tetraethylammonium. Crystal Growth and Design, 2019, 19, 5283-5291.	1.4	6
216	Activity and Data Models of Planning Processes for Industrial Symbiosis in Rural Areas. Kagaku Kogaku Ronbunshu, 2017, 43, 347-357.	0.1	6

#	Article	IF	CITATIONS
217	No more trial and error for zeolites. Science, 2021, 374, 257-258.	6.0	6
218	Nepheline Synthesized from Sodalite as Diesel-Soot Combustion Catalyst: Structure–Property Relationship Study for an Enhanced Water Tolerance. Bulletin of the Chemical Society of Japan, 2012, 85, 527-532.	2.0	5
219	Seed-directed synthesis of zincoaluminosilicate MSE-type zeolites using co-precipitated gels with tetraethylammonium hydroxide as a simple organic structure directing agent. Microporous and Mesoporous Materials, 2018, 257, 272-280.	2.2	5
220	Bridging the Gap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie - International Edition, 2019, 58, 14529-14533.	7.2	5
221	Optimized ultrafast flow synthesis of CON-type zeolite and improvement of its catalytic properties. Reaction Chemistry and Engineering, 2020, 5, 2260-2266.	1.9	5
222	Rapid Synthesis of Hydrothermally Stable ZSM-5 in the Presence of 1-Butanol. Chemistry Letters, 2020, 49, 1006-1008.	0.7	5
223	Formation process of three-dimensional arrays from silica spheres. AICHE Journal, 2003, 49, 1293-1299.	1.8	4
224	Spectral narrowing of the emission from rhodamine 6G infiltrated in synthetic opals enhanced by the surface plasmon resonance. Applied Physics Letters, 2003, 83, 2536-2538.	1.5	4
225	Effect of Base Molecules on One-dimensional Assembly of Silica Nanospheres Mediated by a Block Copolymer. Chemistry Letters, 2013, 42, 481-482.	0.7	4
226	Cryogenic Hydrogen Adsorption onto H-, Li-, Na-Exchanged Zeolites with Various Si/Al Ratios. Adsorption Science and Technology, 2014, 32, 413-423.	1.5	4
227	Crosslinking-assisted Stabilization of Beaded Nanofibers from Elastin-like Double Hydrophobic Polypeptides. Chemistry Letters, 2015, 44, 530-532.	0.7	4
228	Two-Stage Crystallization of Meso- and Macroporous MFI and MEL Zeolites Using Tributylamine-Derived Diquaternary Ammonium Cations as Organic Structure-Directing Agents. Bulletin of the Chemical Society of Japan, 2017, 90, 586-594.	2.0	4
229	Simulation-based analysis for operational decision support on scheduling in sugar crystallization considering quality of molasses and syrup. Computer Aided Chemical Engineering, 2017, 40, 1807-1812.	0.3	4
230	Bioinspired Approach to Silica Nanoparticle Synthesis Using Amine-Containing Block Copoly(vinyl) Tj ETQq0 0 0	rgBT/Ove 1.6	rloçk 10 Tf 50
231	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 19934-19939.	7.2	4
232	Superior Ionâ€exchange Property of Amorphous Aluminosilicates Prepared by a Coâ€precipitation Method. Chemistry - an Asian Journal, 2020, 15, 2029-2034.	1.7	4
233	Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure. Chemistry of Materials, 2021, 33, 8440-8446.	3.2	4
234	Exploring Hydrothermal Synthesis of SAPO-18 under High Hydrostatic Pressure. Nanomaterials, 2022, 12, 396.	1.9	4

#	Article	IF	CITATIONS
235	Robust CON-type zeolite nanocatalyst in methanol-to-olefins reaction: downsizing, recrystallisation and defect-healing treatments toward prolonged lifetime. Materials Advances, 2022, 3, 5442-5450.	2.6	4
236	Structural Control of Phenylene-bridged Periodic Mesoporous Organosilica with Organic Additives. Chemistry Letters, 2009, 38, 1026-1027.	0.7	3
237	Synthesis of MCM-41 with High Manganese Content by Mechanochemical Pretreatment of the Starting Materials. Chemistry Letters, 2014, 43, 1346-1348.	0.7	3
238	Amino Acid-assisted One-dimensional Assembly of Semiconducting Metal Oxide Nanoparticles in Aqueous Alcohol Media. Chemistry Letters, 2014, 43, 934-935.	0.7	3
239	Highly nanoporous silicas with pore apertures near the boundary between micro- and mesopores through an orthogonal self-assembly approach. Chemical Communications, 2015, 51, 10718-10721.	2.2	3
240	Dense Integration of Stable Aromatic Radicals within the Two-Dimensional Interlayer Space of Clay Minerals via Clay-Catalyzed Deamination of Arylammoniums. Chemistry of Materials, 2020, 32, 9008-9015.	3.2	3
241	Ultrafast Encapsulation of Metal Nanoclusters into MFI Zeolite in the Course of Its Crystallization: Catalytic Application for Propane Dehydrogenation. Angewandte Chemie, 2020, 132, 19837-19842.	1.6	3
242	Zeolite Sensor for Nitrogen Monoxide Detection at High Temperature. Materials Research Society Symposia Proceedings, 1996, 454, 297.	0.1	2
243	Synthesis of Ultrafine .BETASiC Particles from SiOx (x=0,1,2) Powders and C2H2 Journal of Chemical Engineering of Japan, 1997, 30, 662-668.	0.3	2
244	Synthesis and Characterization of a New Three-dimensional Organically Templated Nickel-Zinc Phosphate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 465-468.	0.6	2
245	Phase transformation in mesoporous silica films induced by the degradation of organic moiety. Journal of Porous Materials, 2006, 13, 303-306.	1.3	2
246	Bridging the Gap between Structurally Distinct 2D Lamellar Zeolitic Precursors through a 3D Germanosilicate Intermediate. Angewandte Chemie, 2019, 131, 14671-14675.	1.6	2
247	Synthesis of SIC(β) ultrafine particles from Si, SiO, or SiO2 powder and CH4. AICHE Journal, 1997, 43, 2650-2656.	1.8	1
248	Multiscale Simulation Method for Self-Organization of Colloidal Nanoparticles during Drying. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2004, 70, 2258-2264.	0.2	1
249	Synthesis of (Silico)aluminophosphate Molecular Sieves Using an Alkanolamine as a Novel Organic Structure-directing Agent. Chemistry Letters, 2015, 44, 1300-1302.	0.7	1
250	Synthesis of Microporous Zincosilicate *BEA Molecular Sieves from Zincosilicate Gels Co-precipitated in the Presence of an Organic Structure-directing Agent. Chemistry Letters, 2018, 47, 897-900.	0.7	1
251	Toward Efficient Synthesis of Chiral Zeolites: A Rational Strategy for Fluorideâ€Free Synthesis of STWâ€Type Zeolite. Angewandte Chemie, 2020, 132, 20274-20278.	1.6	1
252	Aryl radical initiators accumulated within layered silicates realize polystyrene with directly and regioselectively bonded aryl-terminal groups. Dalton Transactions, 2021, 50, 835-839.	1.6	1

#	Article	IF	CITATIONS
253	Synthesis of molecular sieves as environment conscious materials Journal of Advanced Science, 2001, 13, 363-366.	0.1	1
254	Reduction of crystal size of silicalite-1 synthesized in fluoride-containing media via multi-stage heating with intermediate stirring. Journal of the Ceramic Society of Japan, 2022, 130, 187-194.	0.5	1
255	Ultrafast dealumination of *BEA zeolite using a continuous-flow reactor. Advanced Powder Technology, 2022, 33, 103702.	2.0	1
256	Cluster Formation by Laser Ablation of Zeolites. Materials Research Society Symposia Proceedings, 1996, 457, 57.	0.1	0
257	A New Microporous Silicate With 12-Ring Channels. Materials Research Society Symposia Proceedings, 2000, 658, 6281.	0.1	0
258	Evaporation-Induced Self-Assembly of Colloidal Particles into Two-Dimensional Array during Drying. , 2002, , 255.		0
259	CONTROL OF NANOSTRUCTURE OF MATERIALS. , 2008, , 177-265.		0
260	Sodalite Layer as a Protective Barrier for Diesel Particulate Filters. Bulletin of the Chemical Society of Japan, 2013, 86, 363-369.	2.0	0
261	Rücktitelbild: Organicâ€Free Synthesis of a Highly Siliceous Faujasite Zeolite with Spatially Biased Q ⁴ (<i>n</i> Al) Si Speciation (Angew. Chem. 43/2017). Angewandte Chemie, 2017, 129, 13718-13718.	1.6	0
262	Innentitelbild: Directing Aluminum Atoms into Energetically Favorable Tetrahedral Sites in a Zeolite Framework by Using Organic Structureâ€Directing Agents (Angew. Chem. 14/2018). Angewandte Chemie, 2018, 130, 3582-3582.	1.6	0
263	Rational Manipulation of Stacking Arrangements in Threeâ€Dimensional Zeolites Built from Twoâ€Dimensional Zeolitic Nanosheets. Angewandte Chemie, 2020, 132, 20106-20111.	1.6	0

264 ãfŠãfŽç©ºé−"ææ−™ã®åŸºçŽããæœ€è¿ʿã®è©±é¡Œ. Journal of the Japan Society of Colour Material, 2010, 83, 276@81. o