
Nianjun Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3200031/publications.pdf Version: 2024-02-01

NIANUUN TENC

#	Article	IF	CITATIONS
1	The nature and genomic landscape of repetitive DNA classes in <i>Chrysanthemum nankingense</i> shows recent genomic changes. Annals of Botany, 2023, 131, 215-228.	1.4	5
2	Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. Journal of Experimental Botany, 2022, 73, 197-212.	2.4	5
3	High-efficiency <i>Agrobacterium</i> -mediated transformation of chrysanthemum via vacuum infiltration of internode. Ornamental Plant Research, 2022, 2, 1-7.	0.2	1
4	Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. Plant Science, 2022, 319, 111246.	1.7	10
5	Starch Degradation and Sucrose Accumulation of Lily Bulbs after Cold Storage. International Journal of Molecular Sciences, 2022, 23, 4366.	1.8	7
6	Screening and functional analysis of potential <i>S</i> genes in <i>Chrysanthemum morifolium</i> . Ornamental Plant Research, 2021, 1, 1-11.	0.2	1
7	LIWRKY39 is involved in thermotolerance by activating LIMBF1c and interacting with LICaM3 in lily (Lilium longiflorum). Horticulture Research, 2021, 8, 36.	2.9	42
8	A novel R2R3-MYB transcription factor LIMYB305 from Lilium longiflorum plays a positive role in thermotolerance via activating heat-protective genes. Environmental and Experimental Botany, 2021, 184, 104399.	2.0	24
9	Genome-wide DNA mutations in Arabidopsis plants after multigenerational exposure to high temperatures. Genome Biology, 2021, 22, 160.	3.8	35
10	The transcription factor CmLEC1 positively regulates the seed-setting rate in hybridization breeding of chrysanthemum. Horticulture Research, 2021, 8, 191.	2.9	2
11	A Novel Lateral Organ Boundary-domain Factor CmLBD2 Positively Regulates Pollen Development by Activating <i>CmACOS5</i> in <i>Chrysanthemum morifolium</i> . Plant and Cell Physiology, 2021, 62, 1687-1701.	1.5	6
12	A Novel R2R3-MYB Gene LoMYB33 From Lily Is Specifically Expressed in Anthers and Plays a Role in Pollen Development. Frontiers in Plant Science, 2021, 12, 730007.	1.7	7
13	Characterization and functional analysis of LoUDT1, a bHLH transcription factor related to anther development in the lily oriental hybrid Siberia (Lilium spp.). Plant Physiology and Biochemistry, 2021, 166, 1087-1095.	2.8	8
14	Transcriptome and Metabolome Analyses Provide Insights into the Stomium Degeneration Mechanism in Lily. International Journal of Molecular Sciences, 2021, 22, 12124.	1.8	5
15	Alternative Splicing Provides a Mechanism to Regulate LIHSFA3 Function in Response to Heat Stress in Lily. Plant Physiology, 2019, 181, 1651-1667.	2.3	41
16	Transcriptomic and Metabolomic Analysis of the Heat-Stress Response of Populus tomentosa Carr Forests, 2019, 10, 383.	0.9	48
17	Identification and Analysis of microRNAs in the SAM and Leaves of Populus tomentosa. Forests, 2019, 10, 130.	0.9	11
18	Analysis of Pollen Allergens in Lily by Transcriptome and Proteome Data. International Journal of Molecular Sciences, 2019, 20, 5892.	1.8	9

Nianjun Teng

#	Article	IF	CITATIONS
19	Transcriptome Profiling Unravels a Vital Role of Pectin and Pectinase in Anther Dehiscence in Chrysanthemum. International Journal of Molecular Sciences, 2019, 20, 5865.	1.8	6
20	Cytological and Molecular Characteristics of Pollen Abortion in Lily with Dysplastic Tapetum. Horticultural Plant Journal, 2019, 5, 281-294.	2.3	21
21	Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. Plant Molecular Biology, 2018, 98, 233-247.	2.0	8
22	Investigation of Differences in Fertility among Progenies from Self-Pollinated Chrysanthemum. International Journal of Molecular Sciences, 2018, 19, 832.	1.8	11
23	MicroRNA and Putative Target Discoveries in Chrysanthemum Polyploidy Breeding. International Journal of Genomics, 2017, 2017, 1-13.	0.8	12
24	Morphological and physiological differences between dehiscent and indehiscent anthers of Chrysanthemum morifolium. Journal of Plant Research, 2016, 129, 1069-1082.	1.2	5
25	Chromosome doubling to overcome the chrysanthemum cross barrier based on insight from transcriptomic and proteomic analyses. BMC Genomics, 2016, 17, 585.	1.2	12
26	Identification of MicroRNAs and their Targets Associated with Embryo Abortion during Chrysanthemum Cross Breeding via High-Throughput Sequencing. PLoS ONE, 2015, 10, e0124371.	1.1	19
27	Limited DNA methylation variation and the transcription of MET1 and DDM1 in the genus Chrysanthemum (Asteraceae): following the track of polyploidy. Frontiers in Plant Science, 2015, 6, 668.	1.7	7
28	Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Scientific Reports, 2015, 4, 6536.	1.6	36
29	Identification of Chrysanthemum (<i>Chrysanthemum morifolium</i>) Self-Incompatibility. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	17
30	Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica, 2010, 174, 41-50.	0.6	33
31	Flower morphologic anatomy and embryological characteristics in Chrysanthemum multicaule (Asteraceae). Scientia Horticulturae, 2010, 124, 500-505.	1.7	18
32	Anther wall development, microsporogenesis and microgametogenesis in male fertile and sterile chrysanthemum (Chrysanthemum morifolium Ramat., Asteraceae). Scientia Horticulturae, 2010, 126, 261-267.	1.7	12
33	Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I.) Tj ETQq1 1 0.784314 133-140.	1 rgBT /Ov 0.6	erlock 10 Tf3 42
34	No Detectable Maternal Effects of Elevated CO2 on Arabidopsis thaliana Over 15 Generations. PLoS ONE, 2009, 4, e6035.	1.1	26
35	Anatomical structure and gravitropic response of the creeping shoots of ground-cover chrysanthemum â€~Yuhuajinhua'. Plant Growth Regulation, 2008, 56, 141-150.	1.8	11
36	Integrative Proteomic and Cytological Analysis of the Effects of Extracellular Ca ²⁺ Influx on <i>Pinus bungeana</i> Pollen Tube Development. Journal of Proteome Research, 2008, 7, 4299-4312.	1.8	34

Nianjun Teng

#	Article	IF	CITATIONS
37	Awns play a dominant role in carbohydrate production during the grain-filling stages in wheat (Triticum aestivum). Physiologia Plantarum, 2006, 127, 701-709.	2.6	92
38	Elevated CO 2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytologist, 2006, 172, 92-103.	3.5	302
39	Effects of stem structure and cell wall components on bending strength in wheat. Science Bulletin, 2006, 51, 815-823.	4.3	36