List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3199631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Accounts of Chemical Research, 2013, 46, 1942-1951.	15.6	524
2	Large Molecular Weight Nitroxide Biradicals Providing Efficient Dynamic Nuclear Polarization at Temperatures up to 200 K. Journal of the American Chemical Society, 2013, 135, 12790-12797.	13.7	355
3	Dynamic Nuclear Polarization NMR Spectroscopy of Microcrystalline Solids. Journal of the American Chemical Society, 2012, 134, 16899-16908.	13.7	242
4	A Slowly Relaxing Rigid Biradical for Efficient Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy: Expeditious Characterization of Functional Group Manipulation in Hybrid Materials. Journal of the American Chemical Society, 2012, 134, 2284-2291.	13.7	182
5	The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate. Journal of Physical Chemistry C, 2017, 121, 17188-17196.	3.1	178
6	Dynamic Nuclear Polarization Enhanced Solid‣tate NMR Spectroscopy of Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2012, 51, 123-127.	13.8	161
7	NMR Signatures of the Active Sites in Snâ€Î²â€Zeolite. Angewandte Chemie - International Edition, 2014, 53, 10179-10183.	13.8	157
8	Non-aqueous solvents for DNP surface enhanced NMR spectroscopy. Chemical Communications, 2012, 48, 654-656.	4.1	155
9	Dynamic Nuclear Polarization Enhanced NMR Spectroscopy for Pharmaceutical Formulations. Journal of the American Chemical Society, 2014, 136, 2324-2334.	13.7	145
10	Acquisition of ultra-wideline NMR spectra from quadrupolar nuclei by frequency stepped WURST–QCPMG. Chemical Physics Letters, 2009, 468, 330-335.	2.6	141
11	One hundred fold overall sensitivity enhancements for Silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chemical Science, 2012, 3, 108-115.	7.4	141
12	Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chemical Science, 2016, 7, 550-558.	7.4	141
13	Probing the Transformation of Boron Nitride Catalysts under Oxidative Dehydrogenation Conditions. Journal of the American Chemical Society, 2019, 141, 182-190.	13.7	135
14	Surface Termination of CsPbBr ₃ Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 6117-6127.	13.7	135
15	Persistent Dopants and Phase Segregation in Organolead Mixed-Halide Perovskites. Chemistry of Materials, 2016, 28, 6848-6859.	6.7	132
16	Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations. Journal of the American Chemical Society, 2015, 137, 10710-10719.	13.7	129
17	Dynamic nuclear polarization of quadrupolar nuclei using cross polarization from protons: surface-enhanced aluminium-27 NMR. Chemical Communications, 2012, 48, 1988.	4.1	123
18	Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production. Journal of the American Chemical Society, 2015, 137, 7728-7739.	13.7	123

#	Article	IF	CITATIONS
19	Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 2073-2081.	2.6	121
20	Correlating Synthetic Methods, Morphology, Atomic-Level Structure, and Catalytic Activity of Sn-β Catalysts. ACS Catalysis, 2016, 6, 4047-4063.	11.2	106
21	Structure of Colloidal Quantum Dots from Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy. Journal of the American Chemical Society, 2015, 137, 13964-13971.	13.7	105
22	Amplifying Dynamic Nuclear Polarization of Frozen Solutions by Incorporating Dielectric Particles. Journal of the American Chemical Society, 2014, 136, 15711-15718.	13.7	103
23	BDPA-Nitroxide Biradicals Tailored for Efficient Dynamic Nuclear Polarization Enhanced Solid-State NMR at Magnetic Fields up to 21.1 T. Journal of the American Chemical Society, 2018, 140, 13340-13349.	13.7	99
24	Lead Halide Perovskites: Challenges and Opportunities in Advanced Synthesis and Spectroscopy. ACS Energy Letters, 2017, 2, 906-914.	17.4	97
25	Measuring Nano- to Microstructures from Relayed Dynamic Nuclear Polarization NMR. Journal of Physical Chemistry C, 2017, 121, 15993-16005.	3.1	88
26	Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnOxNanoparticles by Surface-Enhanced Nuclear Magnetic Resonance, M¶ssbauer, and X-ray Absorption Spectroscopies. ACS Nano, 2014, 8, 2639-2648.	14.6	87
27	Solid-State Dynamic Nuclear Polarization at 9.4 and 18.8 T from 100 K to Room Temperature. Journal of the American Chemical Society, 2015, 137, 14558-14561.	13.7	87
28	³⁵ Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients. Physical Chemistry Chemical Physics, 2016, 18, 25893-25904.	2.8	87
29	Transportable hyperpolarized metabolites. Nature Communications, 2017, 8, 13975.	12.8	86
30	Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes. Journal of the American Chemical Society, 2009, 131, 3317-3330.	13.7	85
31	Influences of Dilute Organic Adsorbates on the Hydration of Low-Surface-Area Silicates. Journal of the American Chemical Society, 2015, 137, 8096-8112.	13.7	85
32	WMe6 Tamed by Silica: ≡Si–O–WMe5 as an Efficient, Well-Defined Species for Alkane Metathesis, Leading to the Observation of a Supported W–Methyl/Methylidyne Species. Journal of the American Chemical Society, 2014, 136, 1054-1061.	g 13.7	84
33	Experimental and Theoretical Studies of45Sc NMR Interactions in Solids. Journal of the American Chemical Society, 2006, 128, 10391-10402.	13.7	79
34	Polymorphs of Theophylline Characterized by DNP Enhanced Solid-State NMR. Molecular Pharmaceutics, 2015, 12, 4146-4153.	4.6	77
35	Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2017, 84, 171-181.	2.3	75
36	The Surface Chemistry and Structure of Colloidal Lead Halide Perovskite Nanocrystals. Accounts of Chemical Research, 2021, 54, 707-718.	15.6	71

#	Article	IF	CITATIONS
37	Probing Surface Defects of InP Quantum Dots Using Phosphorus Kα and Kβ X-ray Emission Spectroscopy. Chemistry of Materials, 2018, 30, 6377-6388.	6.7	70
38	Application of the Carrâ ``Purcell Meiboomâ ``Gill Pulse Sequence for the Acquisition of Solid-State NMR Spectra of Spin-1/2Nuclei. Journal of Physical Chemistry A, 2004, 108, 7112-7120.	2.5	62
39	A Wellâ€Defined Pd Hybrid Material for the <i>Z</i> â€Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS. Chemistry - A European Journal, 2013, 19, 12234-12238.	3.3	61
40	DNPâ€enhanced solidâ€state NMR spectroscopy of active pharmaceutical ingredients. Magnetic Resonance in Chemistry, 2018, 56, 583-609.	1.9	61
41	Silicene, Siloxene, or Silicane? Revealing the Structure and Optical Properties of Silicon Nanosheets Derived from Calcium Disilicide. Chemistry of Materials, 2020, 32, 795-804.	6.7	59
42	Improved Dynamic Nuclear Polarization Surfaceâ€Enhanced NMR Spectroscopy through Controlled Incorporation of Deuterated Functional Groups. Angewandte Chemie - International Edition, 2013, 52, 1222-1225.	13.8	58
43	Local Structures and Heterogeneity of Silica-Supported M(III) Sites Evidenced by EPR, IR, NMR, and Luminescence Spectroscopies. Journal of the American Chemical Society, 2017, 139, 8855-8867.	13.7	58
44	Rapid acquisition of wideline MAS solid-state NMR spectra with fast MAS, proton detection, and dipolar HMQC pulse sequences. Physical Chemistry Chemical Physics, 2016, 18, 25284-25295.	2.8	57
45	Synthesis and Characterization of Silica-Supported Boron Oxide Catalysts for the Oxidative Dehydrogenation of Propane. Journal of Physical Chemistry C, 2019, 123, 27000-27011.	3.1	57
46	Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed Radicals in Mesostructured Hybrid Silica Materials. Journal of the American Chemical Society, 2013, 135, 15459-15466.	13.7	56
47	Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 13270.	2.8	56
48	Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. Crystal Growth and Design, 2018, 18, 2588-2601.	3.0	54
49	Bâ€MWW Zeolite: The Case Against Singleâ€6ite Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6546-6550.	13.8	54
50	Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-Passivated Silicon Surfaces. Chemistry of Materials, 2016, 28, 3634-3640.	6.7	50
51	Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry. Journal of the American Chemical Society, 2015, 137, 1862-1874.	13.7	48
52	Probing Lead(II) Bonding Environments in 4-Substituted Pyridine Adducts of (2,6-Me2C6H3S)2Pb:  An X-ray Structural and Solid-State 207Pb NMR Study. Inorganic Chemistry, 2007, 46, 8625-8637.	4.0	46
53	NMR Signatures of the Active Sites in Snâ€Î²â€Zeolite. Angewandte Chemie, 2014, 126, 10343-10347.	2.0	46
54	Materials Characterization by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 5150-5159.	4.6	46

#	Article	IF	CITATIONS
55	Experimental and Computational Insights into the Stabilization of Low-Valent Main Group Elements Using Crown Ethers and Related Ligands. Journal of the American Chemical Society, 2012, 134, 4332-4345.	13.7	41
56	Sensitivity-Enhanced ²⁰⁷ Pb Solid-State NMR Spectroscopy for the Rapid, Non-Destructive Characterization of Organolead Halide Perovskites. Chemistry of Materials, 2018, 30, 7005-7015.	6.7	41
57	Identifying the Molecular Edge Termination of Exfoliated Hexagonal Boron Nitride Nanosheets with Solid-State NMR Spectroscopy and Plane-Wave DFT Calculations. Chemistry of Materials, 2020, 32, 3109-3121.	6.7	41
58	Silica-surface reorganization during organotin grafting evidenced by 119Sn DNP SENS: a tandem reaction of gem-silanols and strained siloxane bridges. Physical Chemistry Chemical Physics, 2014, 16, 17822-17827.	2.8	40
59	Structure elucidation of a complex CO ₂ -based organic framework material by NMR crystallography. Chemical Science, 2016, 7, 4379-4390.	7.4	39
60	Probing the Surface Structure of Semiconductor Nanoparticles by DNP SENS with Dielectric Support Materials. Journal of the American Chemical Society, 2019, 141, 15532-15546.	13.7	39
61	Structure Determination of Boron-Based Oxidative Dehydrogenation Heterogeneous Catalysts With Ultrahigh Field 35.2 T ¹¹ B Solid-State NMR Spectroscopy. ACS Catalysis, 2020, 10, 13852-13866.	11.2	39
62	Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy. Chemistry of Materials, 2017, 29, 10339-10351.	6.7	37
63	Probing O–H Bonding through Proton Detected 1H–17O Double Resonance Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2019, 141, 441-450.	13.7	37
64	Depolymerization of polystyrene under ambient conditions. New Journal of Chemistry, 2021, 45, 2935-2938.	2.8	37
65	Indirect detection of infinite-speed MAS solid-state NMR spectra. Journal of Magnetic Resonance, 2017, 276, 95-102.	2.1	36
66	Dynamic nuclear polarisation enhanced14N overtone MAS NMR spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 12890-12899.	2.8	35
67	The Structure of Molecular and Surface Platinum Sites Determined by DNP-SENS and Fast MAS ¹⁹⁵ Pt Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2020, 142, 18936-18945.	13.7	35
68	Rapid Characterization of Formulated Pharmaceuticals Using Fast MAS ¹ H Solid-State NMR Spectroscopy. Molecular Pharmaceutics, 2019, 16, 3121-3132.	4.6	32
69	Solvent suppression in DNP enhanced solid state NMR. Journal of Magnetic Resonance, 2017, 277, 149-153.	2.1	31
70	<i>t</i> ₁ -Noise eliminated dipolar heteronuclear multiple-quantum coherence solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 20815-20828.	2.8	31
71	Crown ether complexes of tin(II) trifluoromethanesulfonate. Journal of Organometallic Chemistry, 2010, 695, 1012-1018.	1.8	29
72	Argentation gas chromatography revisited: Separation of light olefin/paraffin mixtures using silver-based ionic liquid stationary phases. Journal of Chromatography A, 2017, 1523, 316-320.	3.7	29

#	Article	IF	CITATIONS
73	Enhancing the resolution of ¹ H and ¹³ C solid-state NMR spectra by reduction of anisotropic bulk magnetic susceptibility broadening. Physical Chemistry Chemical Physics, 2017, 19, 28153-28162.	2.8	29
74	Solid-State ⁹¹ Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors. Journal of the American Chemical Society, 2010, 132, 18301-18317.	13.7	28
75	Fast Acquisition of Protonâ€Detected HETCOR Solidâ€State NMR Spectra of Quadrupolar Nuclei and Rapid Measurement of NH Bond Lengths by Frequency Selective HMQC and RESPDOR Pulse Sequences. Chemistry - A European Journal, 2020, 26, 7881-7888.	3.3	28
76	Topochemical Deintercalation of Li from Layered LiNiB: toward 2D MBene. Journal of the American Chemical Society, 2021, 143, 4213-4223.	13.7	28
77	Noncentrosymmetric Tetrel Pnictides RuSi ₄ P ₄ and IrSi ₃ P ₃ : Nonlinear Optical Materials with Outstanding Laser Damage Threshold. Advanced Functional Materials, 2021, 31, 2010293.	14.9	27
78	Structural variation in ethylenediamine and -diphosphine adducts of (2,6-Me2C6H3S)2Pb: a single crystal X-ray diffraction and 207Pb solid-state NMR spectroscopy study. Dalton Transactions, 2013, 42, 9533.	3.3	26
79	High-resolution NMR of hydrogen in organic solids by DNP enhanced natural abundance deuterium spectroscopy. Journal of Magnetic Resonance, 2015, 259, 192-198.	2.1	26
80	Enhancing the Sensitivity of Solid-State NMR Experiments with Very Low Gyromagnetic Ratio Nuclei with Fast Magic Angle Spinning and Proton Detection. Journal of Physical Chemistry A, 2018, 122, 5635-5643.	2.5	26
81	Revealing the Surface Structure of CdSe Nanocrystals by Dynamic Nuclear Polarization-Enhanced ⁷⁷ Se and ¹¹³ Cd Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2021, 143, 8747-8760.	13.7	25
82	Methane Reacts with Heteropolyacids Chemisorbed on Silica to Produce Acetic Acid under Soft Conditions. Journal of the American Chemical Society, 2013, 135, 804-810.	13.7	24
83	Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs. Angewandte Chemie - International Edition, 2019, 58, 15855-15862.	13.8	24
84	Full-Scale Ab Initio Simulation of Magic-Angle-Spinning Dynamic Nuclear Polarization. Journal of Physical Chemistry Letters, 2020, 11, 5655-5660.	4.6	24
85	Hydrophobic radicals embedded in neutral surfactants for dynamic nuclear polarization of aqueous environments at 9.4 Tesla. Chemical Communications, 2014, 50, 10198-10201.	4.1	23
86	Al(ORF)3 (RF = C(CF3)3) activated silica: a well-defined weakly coordinating surface anion. Chemical Science, 2020, 11, 1510-1517.	7.4	23
87	Proton-detected solid-state NMR spectroscopy of spin-1/2 nuclei with large chemical shift anisotropy. Journal of Magnetic Resonance, 2021, 327, 106983.	2.1	23
88	The application of frequency swept pulses for the acquisition of nuclear quadrupole resonance spectra. Journal of Magnetic Resonance, 2010, 206, 32-40.	2.1	22
89	A Hydride Route to Ternary Alkali Metal Borides: A Case Study of Lithium Nickel Borides. Chemistry - A European Journal, 2019, 25, 4123-4135.	3.3	22
90	Combining fast magic angle spinning dynamic nuclear polarization with indirect detection to further enhance the sensitivity of solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2020, 109, 101685.	2.3	22

#	Article	IF	CITATIONS
91	Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling. Angewandte Chemie - International Edition, 2021, 60, 9127-9134.	13.8	21
92	Active Sites in a Heterogeneous Organometallic Catalyst for the Polymerization of Ethylene. ACS Central Science, 2021, 7, 1225-1231.	11.3	21
93	Solid-State ^{47/49} Ti NMR of Titanocene Chlorides. Journal of Physical Chemistry Letters, 2010, 1, 2989-2998.	4.6	20
94	Local versus Average Structure in LaSrAl ₃ O ₇ : A NMR and DFT Investigation. Journal of Physical Chemistry C, 2013, 117, 23451-23458.	3.1	20
95	Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation. Journal of Catalysis, 2017, 346, 180-187.	6.2	20
96	High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by Î ³ -Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 4770-4776.	4.6	19
97	Condensed Phase Deactivation of Solid BrÃ,nsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural. ACS Catalysis, 2019, 9, 11568-11578.	11.2	19
98	Suppressing 1H Spin Diffusion in Fast MAS Proton Detected Heteronuclear Correlation Solid-State NMR Experiments. Solid State Nuclear Magnetic Resonance, 2020, 105, 101636.	2.3	19
99	Enhanced Intersystem Crossing and Transient Electron Spin Polarization in a Photoexcited Pentacene–Trityl Radical. Journal of Physical Chemistry A, 2020, 124, 6068-6075.	2.5	19
100	Controlled Grafting Synthesis of Silica-Supported Boron for Oxidative Dehydrogenation Catalysis. Journal of Physical Chemistry C, 2021, 125, 12636-12649.	3.1	19
101	Chemical and Electrochemical Lithiation of van der Waals Tetrelâ€Arsenides. Chemistry - A European Journal, 2019, 25, 6392-6401.	3.3	17
102	One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS Central Science, 2019, 5, 515-523.	11.3	17
103	Highly Selective Carbonâ€5upported Boron for Oxidative Dehydrogenation of Propane. ChemCatChem, 2021, 13, 3611-3618.	3.7	17
104	Investigating the Microstructure of Poly(cyclosilane) by ²⁹ Si Solid-State NMR Spectroscopy and DFT Calculations. Chemistry of Materials, 2019, 31, 9168-9178.	6.7	16
105	Zwitterionic Trivalent (Alkyl)lanthanide Complexes in Ziegler-Type Butadiene Polymerization. ACS Catalysis, 2019, 9, 827-838.	11.2	16
106	Elucidating the Location of Cd ²⁺ in Post-synthetically Treated InP Quantum Dots Using Dynamic Nuclear Polarization ³¹ P and ¹¹³ Cd Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 2956-2965.	3.1	16
107	Expanding the l–ll–V Phase Space: Soft Synthesis of Polytypic Ternary and Binary Zinc Antimonides. Chemistry of Materials, 2018, 30, 6173-6182.	6.7	15
108	Modulating Reactivity and Selectivity of 2-Pyrone-Derived Bicyclic Lactones through Choice of Catalyst and Solvent. ACS Catalysis, 2018, 8, 2450-2463.	11.2	14

#	Article	IF	CITATIONS
109	Ambient synthesis of nanomaterials by <i>in situ</i> heterogeneous metal/ligand reactions. Nanoscale, 2019, 11, 14060-14069.	5.6	14
110	Synthesis of Interface-Driven Tunable Bandgap Metal Oxides. , 2020, 2, 1211-1217.		14
111	Open-Resonance-Assisted Hydrogen Bonds and Competing Quasiaromaticity. Journal of Organic Chemistry, 2018, 83, 9850-9857.	3.2	13
112	â€~Surface Contrast' NMR Reveals Nonâ€innocent Role of Support in Pd/CeO ₂ Catalyzed Phenol Hydrogenation. ChemCatChem, 2020, 12, 4160-4166.	3.7	13
113	Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. Solid State Nuclear Magnetic Resonance, 2022, 119, 101785.	2.3	13
114	Bâ€MWW Zeolite: The Case Against Single‣ite Catalysis. Angewandte Chemie, 2020, 132, 6608-6612.	2.0	12
115	A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R ₃ Si ⁺ Species. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
116	Measurement of 14N quadrupole couplings in biomolecular solids using indirect-detection 14N solid-state NMR with DNP. Chemical Communications, 2017, 53, 12116-12119.	4.1	11
117	Solvent–Solid Interface of Acid Catalysts Studied by High Resolution MAS NMR. Journal of Physical Chemistry C, 2017, 121, 17226-17234.	3.1	11
118	Intermetallic Nanocatalysts from Heterobimetallic Group 10–14 Pyridine-2-thiolate Precursors. Organometallics, 2020, 39, 1092-1104.	2.3	11
119	Hybrid quantum-classical simulations of magic angle spinning dynamic nuclear polarization in very large spin systems. Journal of Chemical Physics, 2022, 156, 124112.	3.0	10
120	Understanding the Synthesis of Supported Vanadium Oxide Catalysts Using Chemical Grafting. Chemistry - A European Journal, 2020, 26, 1052-1063.	3.3	9
121	Double echo symmetry-based REDOR and RESPDOR pulse sequences for proton detected measurements of heteronuclear dipolar coupling constants. Journal of Magnetic Resonance, 2022, 336, 107147.	2.1	9
122	Synthesis of SrTiO ₃ and Al-doped SrTiO ₃ <i>via</i> the deep eutectic solvent route. Materials Advances, 2022, 3, 4736-4747.	5.4	9
123	Alkaline-Earth Chalcogenide Nanocrystals: Solution-Phase Synthesis, Surface Chemistry, and Stability. ACS Nano, 2022, 16, 12024-12035.	14.6	8
124	Supported two- and three-dimensional vanadium oxide species on the surface of β-SiC. Catalysis Science and Technology, 2017, 7, 3707-3714.	4.1	7
125	Unprecedented generation of 3D heterostructures by mechanochemical disassembly and re-ordering of incommensurate metal chalcogenides. Nature Communications, 2020, 11, 3005.	12.8	7
126	Lithium nickel borides: evolution of [NiB] layers driven by Li pressure. Inorganic Chemistry Frontiers, 2021, 8, 1675-1685.	6.0	7

#	Article	IF	CITATIONS
127	Ba ₆ (Cu _{<i>x</i>} Z _{<i>y</i>})Sn ₄ S ₁₆ (Z = Mg,) Tj	ETQq1	l 0.784314 rgl 7
127	Inorganic Chemistry, 2022, 61, 2640-2651.	4.0	'
128	A Heterogeneous Palladium Catalyst for the Polymerization of Olefins Prepared by Halide Abstraction Using Surface R ₃ Si ⁺ Species. Angewandte Chemie, 2022, 134, .	2.0	7
129	Multinuclear Solid-State NMR Studies of Polymer-Supported Scandium Triflate Catalysts. Journal of Physical Chemistry C, 2014, 118, 22649-22662.	3.1	6
130	Add a Pinch of Tetrel: The Transformation of a Centrosymmetric Metal into a Nonsymmorphic and Chiral Semiconductor. Chemistry - A European Journal, 2022, 28, .	3.3	6
131	Understanding and Promoting Molecular Interactions and Charge Transfer in Dye-Mediated Hybrid Photovoltaic Materials. Journal of Physical Chemistry C, 2014, 118, 25374-25391.	3.1	5
132	Computationally Driven Discovery of a Family of Layered LiNiB Polymorphs. Angewandte Chemie, 2019, 131, 16002-16009.	2.0	5
133	Atomic-Level Structure of Mesoporous Hexagonal Boron Nitride Determined by High-Resolution Solid-State Multinuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations. Chemistry of Materials, 0, , .	6.7	5
134	Rare earth arylsilazido compounds with inequivalent secondary interactions. Chemical Communications, 2018, 54, 7318-7321.	4.1	4
135	Ternary ACd4P3 (A = Na, K) Nanostructures via a Hydride Solution-Phase Route. ACS Materials Au, 0, , .	6.0	4
136	Hydrogenation/Hydrodeoxygenation Selectivity Modulation by Cometal Addition to Palladium on Carbon-Coated Supports. ACS Sustainable Chemistry and Engineering, 2022, 10, 7759-7771.	6.7	4
137	Path Less Traveled: A Contemporary Twist on Synthesis and Traditional Structure Solution of Metastable LiNi ₁₂ B ₈ . ACS Materials Au, 0, , .	6.0	3
138	Dipolar Heteronuclear Correlation Solid-State NMR Experiments between Half-Integer Quadrupolar Nuclei: The Case of ¹¹ B– ¹⁷ O. Journal of Physical Chemistry C, 2022, 126, 11652-11666.	3.1	3
139	Comment on "Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance― ACS Nano, 2019, 13, 6130-6132.	14.6	2
140	Ancillary Steric Effects on the Activation of SiH Bonds in Arylsilazido Rare-Earth Compounds. Organometallics, 2021, 40, 1654-1669.	2.3	2
141	Attached Nitrogen Test by ¹³ C– ¹⁴ N Solid-State NMR Spectroscopy for the Structure Determination of Heterocyclic Isomers. Organic Letters, 2022, 24, 5635-5640.	4.6	2
142	Phosphine Ligand Binding and Catalytic Activity of Group 10–14 Heterobimetallic Complexes. Inorganic Chemistry, 2022, 61, 6888-6897.	4.0	1
143	Semiconducting silicon–phosphorus frameworks for caging exotic polycations. Chemical Communications, 2022, 58, 7622-7625.	4.1	1
144	Surface Functionalization of Black Phosphorus with Nitrenes: Identification of P=N Bonds by Using Isotopic Labeling. Angewandte Chemie, 2021, 133, 9209-9216.	2.0	0

#	Article	IF	CITATIONS
145	Sensitizing solid-state NMR spectroscopy for the characterization of pure and formulated pharmaceuticals. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a252-a252.	0.1	0
146	Locating hydrogen atoms with sensitivity-enhanced NMR spectroscopy. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, a253-a253.	0.1	0
147	Surface Characterization of Cadmium Selenide Nanocrystals by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy. , 0, , .		0
148	Rationalizing the Surface Structure of CsPbBr3 Perovskite QDs upon Post-synthesis Surface Treatments by Solid-State NMR Spectroscopy. , 0, , .		0