List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3199450/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Charge-charge interaction in three-layer systems: Classical approach. Physical Review B, 2022, 105, .	1.1	0
2	Overview Of Modern Philosophy Of Science (part one). Filosofska Dumka (Philosophical Thought), 2022, -, 115-133.	0.0	2
3	Effect of trampoline sputtering on surface morphology and coatings properties. Journal Physics D: Applied Physics, 2021, 54, 255301.	1.3	2
4	Electrostatic image force energy for charges in three-layer structures: exact formulas and their approximations. Journal of Physics Condensed Matter, 2021, 33, 205002.	0.7	1
5	Tunneling STM/STS and break-junction spectroscopy of the Pb-doped Bi2223 superconductor. Journal of Physics: Conference Series, 2021, 1975, 012005.	0.3	5
6	Tunneling and break junction spectroscopy of the ambient-pressure semiconducting and superconducting gap structures in the ladder compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:m mathvariant="normal"><cu< mml:mi=""><mml:mn>24</mml:mn></cu<></mml:m></mml:mrow></mml:msub><mml:msub><mml:msub><mml:mi< p=""></mml:mi<></mml:msub></mml:msub></mml:math></mml:math>	i> £ ∎ <td>l:mi><mml:m< td=""></mml:m<></td>	l:mi> <mml:m< td=""></mml:m<>
7	Orientation of adsorbed polar molecules (dipoles) in external electrostatic field. Journal of Physics Condensed Matter, 2021, 33, 035004.	0.7	2
8	Nano-scale periodic structures and gap distribution in Pb-doped Bi2223 cuprate superconductors observed by STM/STS. Superconductor Science and Technology, 2020, 33, 095011.	1.8	5
9	Electric dipole image forces in three-layer systems: The classical electrostatic model. Journal of Chemical Physics, 2020, 152, 094705.	1.2	4
10	Break-junction tunneling spectra of Bi2212 superconducting ceramics: Influence of inhomogeneous <i>d</i> -wave-Cooper-pairing and charge-density-wave order parameters. Low Temperature Physics, 2020, 46, 400-413.	0.2	4
11	Non-Coulombic behavior of electrostatic charge-charge interaction in three-layer heterostructures. Journal of Electrostatics, 2019, 102, 103377.	1.0	3
12	Electrostatic Interaction of Point Charges in Three-Layer Structures: The Classical Model. Condensed Matter, 2019, 4, 44.	0.8	5
13	New collective trampoline mechanism of accelerated ion-plasma sputtering. Journal Physics D: Applied Physics, 2019, 52, 185201.	1.3	6
14	Atomic structures and nanoscale electronic states on the surface of MgB2 superconductor observed by scanning tunneling microscopy and spectroscopy. Low Temperature Physics, 2019, 45, 1209-1217.	0.2	6
15	The â€~non-Coulombic' character of classical electrostatic interaction between charges near interfaces. European Journal of Physics, 2018, 39, 045203.	0.3	4
16	Electrostatic interaction near the interface between dielectric media taking into account the nonlocality of the Coulomb field screening. Journal of Molecular Liquids, 2018, 267, 166-176.	2.3	2
17	Cap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS. IOP Conference Series: Materials Science and Engineering, 2018, 369, 012024.	0.3	3
18	Recollections of Professor Yuriy Reznikov. Journal of Molecular Liquids, 2018, 267, 11-28.	2.3	1

#	Article	IF	CITATIONS
19	Switch from thermal to force-driven pathways of protein refolding. Journal of Chemical Physics, 2017, 146, 135101.	1.2	8
20	Quasiparticle conductance-voltage characteristics for break junctions involving <i>d</i> -wave superconductors: charge-density-wave effects. Journal of Physics Condensed Matter, 2017, 29, 505602.	0.7	4
21	Multilayered cuprate superconductor Ba2Ca5Cu6O12(O1â^'x,Fx)2 studied by temperature-dependent scanning tunneling microscopy and spectroscopy. Physical Review B, 2017, 95, .	1.1	10
22	How does the break-junction quasiparticle tunnel conductance look like for d-wave superconductors?. Low Temperature Physics, 2017, 43, 1172-1180.	0.2	3
23	Electrostatic charge-charge and dipole-dipole interactions near the surface of a medium with screening non-locality (Review Article). Low Temperature Physics, 2016, 42, 661-671.	0.2	6
24	Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article). Low Temperature Physics, 2016, 42, 863-872.	0.2	11
25	Scanning Tunnelling Microscopy and Spectroscopy of the Layered Nitride Superconductor α-NaxTiNCl. Physics Procedia, 2016, 81, 73-76.	1.2	4
26	Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in <i>c</i> -axis junctions involving <i>d</i> -wave superconductors with charge density waves. Journal of Physics Condensed Matter, 2016, 28, 445701.	0.7	5
27	Quasiparticle current along the <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>c</mml:mi>axis in junctions involving<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi>-wave</mml:math </mmi:math 	1.1	7
28	superconductors partially gapped by charge density waves. Physical Review 8, 2015, 92, . Break-junction Tunneling Spectroscopy of Superconducting FeSexTe1-x. Physics Procedia, 2015, 65, 65-68.	1.2	1
29	Stationary Josephson current as a tool to detect charge density waves in high- <mml:math altimg="si34.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:misub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi></mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:misub></mml:math>	ıl: <mark>0.</mark> 6 Il:mī>c <td>mi:mi></td>	mi:mi>
30	Variable electronic stripe structures of the parent iron-chalcogenide superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Fe<mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>dby STM-STS. Physical Review B, 2014, 90, .</mml:mi></mml:mrow></mml:mi </mml:msub></mml:math 	ml:mi> <td>າmi:mrow><!--</td--></td>	າ mi: mrow> </td
31	Tunneling spectra of break junctions involving Nb3Sn. Low Temperature Physics, 2014, 40, 925-928.	0.2	9
32	Anomalous temperature dependence of the stationary Josephson tunnel current in junctions betweend-wave superconductors. Low Temperature Physics, 2014, 40, 816-822.	0.2	4
33	Stationary Josephson current in junctions involving d-wave superconductors with charge density waves: the temperature dependence and deviations from the law of corresponding states. European Physical Journal B, 2014, 87, 1.	0.6	4
34	Charge density waves as the origin of dip-hump structures in the differential tunneling conductance of cuprates: The case of d-wave superconductivity. Physica C: Superconductivity and Its Applications, 2014, 503, 7-13.	0.6	13
35	Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors <i>M</i> NCl (<i>M</i> = Ti, Hf, Zr). Journal of Physics: Conference Series, 2014, 507, 012010.	0.3	0
36	What do we mean when using the acronym â€~BCS'? The Bardeen–Cooper–Schrieffer theory of superconductivity. European Journal of Physics, 2013, 34, 371-382.	0.3	11

#	Article	IF	CITATIONS
37	Tunneling break-junction measurements of the superconducting gap in Y2C3. Physica C: Superconductivity and Its Applications, 2013, 484, 52-55.	0.6	6
38	Scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy of FeSe1– <i>x</i> Te <i>x</i> . Low Temperature Physics, 2013, 39, 265-273.	0.2	9
39	Charge density waves ind-wave superconductors: Thermodynamics and Josephson tunneling (Review) Tj ETQq1	1 0.784314 0.2	1 rgBT /Overl
40	Superconducting β-ZrNClx probed by scanning-tunnelling and break-junction spectroscopy. Physica C: Superconductivity and Its Applications, 2013, 494, 89-94.	0.6	6
41	Orientation peculiarities of dc Josephson tunneling between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi>-wave superconductors with charge density waves. Physical Review B. 2013. 87</mml:math 	1.1	12
42	Dynamic image forces near a metal surface and the point-charge motion. European Journal of Physics, 2012, 33, 1289-1299.	0.3	3
43	Image forces for a point-like dipole near a plane metal surface: An account of the spatial dispersion of dielectric permittivity. Surface Science, 2012, 606, 510-515.	0.8	17
44	Role of dipole image forces in molecular adsorption. European Physical Journal B, 2012, 85, 1.	0.6	12
45	dc Josephson current for <i>d</i> -wave superconductors with charge density waves. Low Temperature Physics, 2012, 38, 326-332.	0.2	6
46	d-Wave Superconductivity and s-Wave Charge Density Waves: Coexistence between Order Parameters of Different Origin and Symmetry. Symmetry, 2011, 3, 699-749.	1.1	18
47	DC Current in 4-N-Pentyl-4′-Cyanobiphenyl Liquid Crystal Cells. Molecular Crystals and Liquid Crystals, 2011, 540, 182-187.	0.4	3
48	The phase diagram for coexisting d-wave superconductivity and charge-density waves: cuprates and beyond. Journal of Physics Condensed Matter, 2011, 23, 385701.	0.7	18
49	Charge density waves in partially dielectrized d-pairing superconductors. Physics of the Solid State, 2010, 52, 18-26.	0.2	2
50	Tunneling spectroscopy of layered superconductors: intercalated Li0.48(C4H8O)xHfNCl and De-intercalated HfNCl0.7. European Physical Journal B, 2010, 73, 471-482.	0.6	14
51	Scanning tunneling spectroscopy and break junction spectroscopy on iron-oxypnictide superconductor NdFeAs(O0.9F0.1). Physica C: Superconductivity and Its Applications, 2010, 470, 1070-1072.	0.6	8
52	Tunneling break-junction spectroscopy on the superconductor NdFeAs(O0.9F0.1). Physica C: Superconductivity and Its Applications, 2010, 470, S358-S359.	0.6	13
53	Interplay between charge-density-wave gapping and d-wave superconductivity in high-T oxides. Physica C: Superconductivity and Its Applications, 2010, 470, S78-S79.	0.6	0
54	STM/STS measurements of the layered superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" overflow="scroll"><mml:mcow>cmml:mi.i2c/mml:mtort>c/mml:mtort</mml:mcow></mml:math 	ml ^{0.6}	HAUCI

overflow="scroll"><mml:mrow><mml:mi>î²</mml:mi><mml:mtext>-</mml:mtext><mml:msub><mml:mrow><mml:mtext>HfNCl</mml: Physica C: Superconductivity and Its Applications, 2010, 470, S725-S727.

#	Article	IF	CITATIONS
55	Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation. Advances in Condensed Matter Physics, 2010, 2010, 1-40.	0.4	51
56	Coexistence of Charge Density Waves and d-Wave Superconductivity in Cuprates. Sharing of the Fermi Surface. Zeitschrift FA¼r Kristallographie, 2010, 225, .	1.1	1
57	Charge density waves in d-wave superconductors. Low Temperature Physics, 2010, 36, 1049-1057.	0.2	4
58	Transient and steady electric currents through a liquid crystal cell. Liquid Crystals, 2010, 37, 1171-1181.	0.9	12
59	Model for the coexistence of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>d</mml:mi></mml:math> -wave superconducting and charge-density-wave order parameters in high-temperature cuprate superconductors. Physical Review B, 2009, 80, .	1.1	20
60	Mechanical stability of proteins. Journal of Chemical Physics, 2009, 131, 024121.	1.2	13
61	Charge-density-wave features in tunnel spectra of high-Tcsuperconductors. Journal of Physics: Conference Series, 2009, 150, 052047.	0.3	0
62	Semiconducting gap of Nd1.85Ce0.15CuO4revealed by break-junction tunnelling spectroscopy. Journal of Physics: Conference Series, 2009, 150, 052046.	0.3	2
63	Tunnel spectra of junctions involving BSCCO and other cuprates: Superconducting and charge-density-wave gapping. Physica C: Superconductivity and Its Applications, 2008, 468, 1145-1147.	0.6	1
64	Synthesis and transport properties of solid solutions Sr1â^'xKxPbO3â^'yFy (0≤, yâ‰ 0 .20). Journal of Alloys and Compounds, 2008, 465, 15-19.	2.8	3
65	New method for deciphering free energy landscape of three-state proteins. Journal of Chemical Physics, 2008, 129, 105102.	1.2	9
66	Temperature-dependent pseudogap-like features in tunnel spectra of high- <i>T</i> _c cuprates as a manifestation of charge-density waves. Journal of Physics Condensed Matter, 2008, 20, 425218.	0.7	27
67	Analysis of the pseudogap-related structure in the tunnel spectra of superconducting Bi2Sr2CaCu2O8+δrevealed by break-junction technique. Low Temperature Physics, 2008, 34, 409-412.	0.2	5
68	Pseudogap-Like Phenomena in Cuprates as a Manifestation of Charge-Density Waves. Acta Physica Polonica A, 2008, 114, 59-66.	0.2	0
69	Analysis of the pseudogap-related structure in tunneling spectra of superconducting <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mi> Bi</mml:mi> <mml:mn> 2 </mml:mn> </mml:msub> <mml:mi mathvariant="normal"> O <mml:mrow> <mml:mn> 8 </mml:mn> <mml:mo> + </mml:mo> <mml:mi> l^<td>subı>1×1 mml ml:mi><td>:mÞasriml:mrow></td></td></mml:mi></mml:mrow></mml:mi </mml:mrow></mml:math 	sub ı >1×1 mml ml:mi> <td>:mÞasriml:mrow></td>	:mÞasriml:mrow>
70	by. Physical Review 8, 2007, 76, . How to explain the non-zero mass of electromagnetic radiation consisting of zero-mass photons. European Journal of Physics, 2007, 28, 649-655.	0.3	12
71	Charge-density-wave origin of the dip-hump structure in tunnel spectra of the BSCCO superconductor. Physical Review B, 2007, 75, .	1.1	37
72	Effect of charge density waves on the tunnel spectra of the Bi2Sr2CaCu2O8+δ superconductor. Physics of the Solid State, 2007, 49, 1422-1428.	0.2	0

#	Article	IF	CITATIONS
73	Charge-Density-Wave Origin of Dip-Hump Structures in the Tunnel Spectra of Bi ₂ Sr ₂ CaCu ₂ O _{8+δ} . Acta Physica Polonica A, 2007, 111, 573-580.	0.2	0
74	Excess nonspecific Coulomb ion adsorption at the metal electrode/electrolyte solution interface: Role of the surface layer. Physical Review E, 2006, 73, 021606.	0.8	14
75	P-126: Electrostatic Control of Ion Adsorption in Liquid Crystal Cells. Digest of Technical Papers SID International Symposium, 2006, 37, 670.	0.1	1
76	Tunneling measurements of CeRhAs single crystal. Physica B: Condensed Matter, 2006, 378-380, 786-787.	1.3	0
77	Electron tunneling experiments on La-substituted Kondo-semiconductor CeRhAs. Physica B: Condensed Matter, 2006, 383, 26-27.	1.3	1
78	Spin-dependent tunneling in junctions containing metals with charge density waves in a magnetic field. Physics of the Solid State, 2006, 48, 2240-2249.	0.2	0
79	Spin-dependent splitting of the tunnel conductivity peaks in the magnetic field for junctions involving CDW metals. Physica B: Condensed Matter, 2006, 378-380, 567-568.	1.3	0
80	Spin-Dependent Tunnel Currents in Junctions Involving Charge-Density-Wave Metals. Japanese Journal of Applied Physics, 2006, 45, 2242-2245.	0.8	1
81	Spin-Dependent Tunneling in a Magnetic Field for Junctions Involving Normal and Superconducting CDW Metals. Acta Physica Polonica A, 2006, 109, 477-484.	0.2	0
82	Spin-polarized electron tunneling between charge-density-wave metals. Low Temperature Physics, 2005, 31, 59-72.	0.2	1
83	Paramagnetic effect of magnetic field on superconductors with charge-density waves. Low Temperature Physics, 2005, 31, 41-46.	0.2	3
84	Enhancement of the paramagnetic limit for superconductors with charge-density waves. Physica C: Superconductivity and Its Applications, 2005, 426-431, 325-329.	0.6	0
85	Spatially heterogeneous character of superconductivity in MgB2 as revealed by local probe and bulk measurements. Physica C: Superconductivity and Its Applications, 2005, 426-431, 230-233.	0.6	10
86	Manifestations of inhomogeneity in : from specific heat to tunnel measurements. Physica B: Condensed Matter, 2005, 359-361, 460-462.	1.3	2
87	Current carrier localization and Coulomb gap observed in SrPbO3â~Îby transport measurements and tunnel spectroscopy. Journal of Physics Condensed Matter, 2005, 17, 7407-7416.	0.7	5
88	Paramagnetic spin splitting of the conductances for tunnel junctions between partially gapped metals with charge density waves and normal metals or ferromagnets. Journal of Physics Condensed Matter, 2005, 17, 1907-1922.	0.7	1
89	Enhanced paramagnetic limit of the upper critical magnetic field for superconductors with charge-density waves. Journal of Physics Condensed Matter, 2004, 16, 3681-3690.	0.7	8
90	New method of the spin-polarization detection in tunnel junctions ferromagnet-insulator-charge density wave metal. JETP Letters, 2004, 80, 49-53.	0.4	0

#	Article	IF	CITATIONS
91	Transport properties of bulk and thin-film MgB2 superconductors: effects of preparation conditions. Physica C: Superconductivity and Its Applications, 2004, 402, 325-334.	0.6	25
92	Heat capacity of mesoscopically inhomogeneous superconductors: theory and applications to MgB2. Physica C: Superconductivity and Its Applications, 2004, 405, 187-211.	0.6	11
93	Oxalate coprecipitation synthesis and transport properties of polycrystalline Sr1â^'La PbO3â^' solid solutions. Journal of Alloys and Compounds, 2004, 367, 246-250.	2.8	5
94	Tunnel Currents in Charge-Density-Wave Metal–Insulator–Charge-Density-Wave Metal Structures: Magnetic Field-induced Spin-splitting of the Conductance Peaks. Journal of the Physical Society of Japan, 2004, 73, 1931-1937.	0.7	3
95	Thermodynamics of superconductors with charge-density waves. Journal of Physics Condensed Matter, 2003, 15, 2745-2753.	0.7	34
96	Heat capacity of mesoscopically disordered superconductors with emphasis on MgB2. Journal of Physics Condensed Matter, 2002, 14, 9621-9629.	0.7	13
97	Heat capacity of mesoscopically disordered superconductors: implications for MgB2. Low Temperature Physics, 2002, 28, 803-811.	0.2	6
98	Charge- and Spin-Density-Wave Superconductors: Pseudogap Puzzle in the Cuprates. , 2002, , 61-70.		0
99	Transport study of newly synthesized polycrystalline Sr1â^'K PbO3â^' solid solutions. Journal of Alloys and Compounds, 2002, 346, 17-23.	2.8	6
100	Charge- and spin-density waves in existing superconductors: competition between Cooper pairing and Peierls or excitonic instabilities. Physics Reports, 2002, 367, 583-709.	10.3	188
101	Electronic Thermal Conductivity of Partially-Gapped CDW Superconductors. , 2002, , 105-113.		0
102	Charge- and spin-density-wave superconductors. Superconductor Science and Technology, 2001, 14, R1-R27.	1.8	150
103	Dynamical Image Forces near Semiconductor-Vacuum Interfaces and in Vacuum Interlayers between Semiconductors. Physica Status Solidi (B): Basic Research, 2001, 226, 133-153.	0.7	2
104	Dynamic image forces near a semiconductor-vacuum interface: The role of quantum-mechanical corrections. Physics of the Solid State, 2001, 43, 2328-2335.	0.2	1
105	Influence of mesoscopic nonhomogeneities on low-temperature properties of superconductors. Physica B: Condensed Matter, 2000, 281-282, 802-803.	1.3	0
106	Non-stationary Josephson tunneling involving superconductors with spin–density waves. Physica C: Superconductivity and Its Applications, 2000, 329, 198-230.	0.6	9
107	Superconductors with charge- and spin-density waves: theory and experiment (Review). Low Temperature Physics, 2000, 26, 305-330.	0.2	33
108	Order Parameter Symmetry and Low-Temperature Asymptotics for Mesoscopically Nonhomogeneous Superconductors. , 2000, , 193-212.		0

#	Article	IF	CITATIONS
109	Nonstationary Josephson effect for superconductors with spin-density waves. Physical Review B, 1999, 60, 14897-14906.	1.1	6
110	Influence of order-parameter nonhomogeneities on low-temperature properties of superconductors. Physical Review B, 1999, 60, 7465-7472.	1.1	16
111	Tunnel currents between partially-gapped superconductors with charge-density waves. Physica B: Condensed Matter, 1999, 259-261, 454-455.	1.3	2
112	Nonstationary Josephson, interference and quasiparticle currents for superconductors with spin density waves. Physica C: Superconductivity and Its Applications, 1999, 317-318, 486-488.	0.6	0
113	Josephson and quasiparticle currents in tunneling junctions between partially dielectrized (partially) Tj ETQq1	1 0.784314 0.2	rgBT /Overloc
114	Importance of the Plasmon Damping for the Dynamical Image Forces. Physica Status Solidi (B): Basic Research, 1999, 214, 29-33.	0.7	2
115	Coexistence of Superconductivity with Charge- or Spin- Density Waves. , 1999, , 187-198.		1
116	Influence of Inelastic Quasiparticle Scattering on Thermodynamic and Transport Properties of High-Temperature Oxides. , 1999, , 19-30.		0
117	Power-law low-temperature asymptotics for spatially nonhomogeneous s-wave superconductors. Low Temperature Physics, 1999, 25, 503-508.	0.2	4
118	Symmetry breaking in tunnel junctions between partially dielectrized metals with charge or spin density waves. Physics of the Solid State, 1998, 40, 351-353.	0.2	1
119	Non-stationary Josephson effect for superconductors with charge-density waves: NbSe 3. Europhysics Letters, 1997, 38, 371-376.	0.7	10
120	Josephson tunnelling involving superconductors with charge-density waves. Journal of Physics Condensed Matter, 1997, 9, 3901-3920.	0.7	32
121	Asymmetrical tunneling between similar metallic junctions with charge-density or spin-density waves: The case of broken symmetry. Physical Review B, 1997, 56, 7785-7788.	1.1	26
122	Nonstationary Josephson effect for superconductors with charge-density waves. Physical Review B, 1997, 55, 1081-1099.	1.1	33
123	Possibility of cold fusion in palladium deuterides: Screening effects and connection to superconducting properties. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 107-118.	0.6	3
124	Josephson and single-particle currents between partially dielectricized superconductors with charge-density waves. Physics of the Solid State, 1997, 39, 889-896.	0.2	0
125	Effects of nonadiabaticity and finite screening length in electron tunneling across narrow interelectrode gaps. Technical Physics, 1997, 42, 102-104.	0.2	0
126	Josephson and quasiparticle currents for partially-dielectrized superconductors with charge-density waves. European Physical Journal D, 1996, 46, 577-578.	0.4	0

#	Article	IF	CITATIONS
127	Inelastic scattering and superconducting gap in high-T c oxides. European Physical Journal D, 1996, 46, 921-922.	0.4	Ο
128	Image forces in tunnel and point-contact spectroscopy. Physica B: Condensed Matter, 1996, 218, 280-282.	1.3	1
129	Influence of inelastic quasiparticle scattering on thermodynamic and transport properties of high-Tc oxides. Physica C: Superconductivity and Its Applications, 1996, 258, 236-252.	0.6	7
130	Tunnel characteristics of partially gapped non-superconducting metals with charge- or spin-density waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 223, 221-226.	0.9	4
131	Tunneling spectroscopy of normal metals with charge-density or spin-density waves. Physical Review B, 1995, 52, 7437-7447.	1.1	37
132	The influence of the temperature-dependent inelastic electron scattering on the thermodynamical and transport properties of superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2385-2386.	0.6	1
133	Temperature-dependent inelastic electron scattering and superconducting state properties. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 190, 191-195.	0.9	4
134	Partial Dielectrization Model for Oxide Superconductivity. Research Reports in Physics, 1992, , 161-169.	0.0	7
135	Scaling behaviour of relaxation dependences in metaloxide superconductors. Bulletin of Materials Science, 1991, 14, 949-950.	0.8	1
136	Resistive noise and heat effects in the granular oxide superconductor BaPb0.75Bi0.25O3. Journal of Physics Condensed Matter, 1991, 3, 1539-1547.	0.7	1
137	Josephson Tunneling Critical Current between Superconductors with Charge―or Spinâ€Đensity Waves. Physica Status Solidi (B): Basic Research, 1990, 161, 293-302.	0.7	19
138	Flicker-noise in superconducting glass - ceramics BaPb0.75Bi0.25O3. Physica B: Condensed Matter, 1990, 165-166, 1165-1166.	1.3	1
139	Influence of the electron spectrum dielectrization on the critical current of the Josephson medium BaPb1â^'xBixO3. Physica B: Condensed Matter, 1990, 165-166, 1591-1592.	1.3	Ο
140	Surface tension at the electrolyte solution—metal electrode interface—III. polyvalent and non-symmetrical electrolytes. Electrochimica Acta, 1990, 35, 545-554.	2.6	13
141	Upper critical magnetic field of superconductors with a dielectric gap on the Fermi-surface sections. Physical Review B, 1988, 38, 297-306.	1.1	35
142	Multiple effects in the disordered Josephson medium BaPb1-xBixO3. Journal of Physics C: Solid State Physics, 1988, 21, L153-L159.	1.5	7
143	Dynamical image forces in three-layer systems and field emission. Surface Science, 1987, 186, 523-549.	0.8	25
144	Thermodynamics of Superconductors with Charge―and Spinâ€Density Waves. Physica Status Solidi (B): Basic Research, 1987, 141, 575-587.	0.7	32

#	Article	IF	CITATIONS
145	Surface tension at the electrolyte solution/metal electrode interface—II. The spatial dispersion of polar solvent dielectric permittivity. Electrochimica Acta, 1986, 31, 777-782.	2.6	8
146	Electron potential energy near the ferromagnetic metal– vacuum interface. Physica Status Solidi (B): Basic Research, 1986, 133, 135-142.	0.7	4
147	Metal oxide superconductor BaPb1–xBixO3: unusual properties and new applications. Uspekhi Fizicheskikh Nauk, 1986, 29, 1135-1150.	0.3	27
148	Thermodynamics of superconductors with charge and spin-density waves. Journal of Physics F: Metal Physics, 1984, 14, 3031-3039.	1.6	32
149	Influence of impurity scattering on the critical temperature of superconductors with a partial gap in the electron spectrum. Journal of Low Temperature Physics, 1983, 51, 581-599.	0.6	21
150	Surface tension at the interface between electrolyte solution and metal (semiconductor) electrode. Spatial dispersion effects. Electrochimica Acta, 1983, 28, 1771-1776.	2.6	10
151	Image forces and electron spectrum at the surface of liquid helium. Surface Science, 1983, 130, 373-394.	0.8	14
152	Thermodynamic properties of superconducting ceramics BaPb1-xBixO3. Journal of Physics C: Solid State Physics, 1982, 15, L569-L572.	1.5	22
153	Josephson effects in bulk solid state samples of superconducting ceramics BaPb1-xBixO3. Physics Letters, Section A: General, Atomic and Solid State Physics, 1982, 92, 455-456.	0.9	9
154	Influence of Semiconductor Dielectric Function Spatial Dispersion on Charge Electrostatic Energy near the Semiconductor/Vacuum Interface and Field Emission Current. Physica Status Solidi (B): Basic Research, 1982, 110, 407-416.	0.7	20
155	Electromagnetic properties of superconductors with dielectric gap on the fermi surface. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 107, 749-750.	0.9	1
156	Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape. Surface Science, 1980, 94, 179-203.	0.8	51
157	Measurements of Stationary Josephson Current between High- Tc Oxides as a Tool to Detect Charge Density Waves. , 0, , .		0