
Habib Bagheri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3199141/publications.pdf Version: 2024-02-01

HARIR RACHERI

#	Article	IF	CITATIONS
1	An electropolymerized aniline-based fiber coating for solid phase microextraction of phenols from water. Analytica Chimica Acta, 2005, 532, 89-95.	2.6	194
2	Conductive polymer-based microextraction methods: A review. Analytica Chimica Acta, 2013, 767, 1-13.	2.6	155
3	On-line trace enrichment of phenolic compounds from water using a pyrrole-based polymer as the solid-phase extraction sorbent coupled with high-performance liquid chromatography. Analytica Chimica Acta, 2004, 513, 445-449.	2.6	148
4	Conductive polymers as new media for solid-phase extraction: Isolation of chlorophenols from water sample. Journal of Chromatography A, 2003, 986, 111-119.	1.8	125
5	Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater. Journal of Chromatography A, 2009, 1216, 7687-7693.	1.8	121
6	An aniline-based fiber coating for solid phase microextraction of polycyclic aromatic hydrocarbons from water followed by gas chromatography-mass spectrometry. Journal of Chromatography A, 2007, 1152, 168-174.	1.8	119
7	Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. Journal of Chromatography A, 2003, 1015, 23-30.	1.8	115
8	A novel needle trap sorbent based on carbon nanotube-sol–gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media. Analytica Chimica Acta, 2011, 683, 212-220.	2.6	105
9	A novel sol–gel-based amino-functionalized fiber for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Analytica Chimica Acta, 2008, 616, 49-55.	2.6	90
10	Towards greater mechanical, thermal and chemical stability in solid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2012, 34, 126-139.	5.8	88
11	Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Analytica Chimica Acta, 2012, 713, 63-69.	2.6	86
12	Extraction of fluoxetine from aquatic and urine samples using sodium dodecyl sulfate-coated iron oxide magnetic nanoparticles followed by spectrofluorimetric determination. Analytica Chimica Acta, 2011, 692, 80-84.	2.6	81
13	A chitosan–polypyrrole magnetic nanocomposite as μ-sorbent for isolation of naproxen. Analytica Chimica Acta, 2014, 816, 1-7.	2.6	80
14	Determination of very low levels of dissolved mercury(II) and methylmercury in river waters by continuous flow with on-line UV decomposition and cold-vapor atomic fluorescence spectrometry after pre-concentration on a silica gel-2-mercaptobenzimidazol sorbent. Talanta, 2001, 55, 1141-1150.	2.9	76
15	Immersed single-drop microextraction–electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples. Journal of Hazardous Materials, 2009, 165, 353-358.	6.5	76
16	Automated trace determination of earthy-musty odorous compounds in water samples by on-line purge-and-trap–gas chromatography–mass spectrometry. Journal of Chromatography A, 2006, 1136, 170-175.	1.8	73
17	Sol–gel-based solid-phase microextraction and gas chromatography-mass spectrometry determination of dextromethorphan and dextrorphan in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 818, 147-157.	1.2	68
18	Immersed solvent microextraction and gas chromatography–mass spectrometric detection of s-triazine herbicides in aquatic media. Analytica Chimica Acta, 2005, 537, 81-87.	2.6	66

#	Article	IF	CITATIONS
19	A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B. Analytica Chimica Acta, 2013, 794, 38-46.	2.6	66
20	A sol-gel-based amino functionalized fiber for immersed solid-phase microextraction of organophosphorus pesticides from environmental samples. Microchemical Journal, 2010, 94, 1-6.	2.3	64
21	Electrospun composite of polypyrrole-polyamide as a micro-solid phase extraction sorbent. Analytical and Bioanalytical Chemistry, 2011, 400, 3607-3613.	1.9	64
22	Polypyrrole/polyamide electrospunâ€based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples. Journal of Separation Science, 2012, 35, 114-120.	1.3	64
23	Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Analytica Chimica Acta, 2012, 716, 34-39.	2.6	63
24	Multiresidue determination of pesticides from aquatic media using polyaniline nanowires network as highly efficient sorbent for microextraction in packed syringe. Analytica Chimica Acta, 2012, 740, 43-49.	2.6	62
25	Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides. Journal of Chromatography A, 2012, 1222, 13-21.	1.8	60
26	A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction. Journal of Chromatography A, 2016, 1431, 27-35.	1.8	60
27	Immersed solvent microextraction of phenol and chlorophenols from water samples followed by gas chromatography–mass spectrometry. Journal of Chromatography A, 2004, 1046, 27-33.	1.8	60
28	Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples. Analytica Chimica Acta, 2014, 813, 48-55.	2.6	58
29	Aniline–silica nanocomposite as a novel solid phase microextraction fiber coating. Journal of Chromatography A, 2012, 1238, 22-29.	1.8	57
30	Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Analytical Methods, 2011, 3, 1284.	1.3	55
31	Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs. Analyst, The, 2007, 132, 672.	1.7	54
32	Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber. Mikrochimica Acta, 2011, 174, 295-301.	2.5	53
33	Determination of fentanyl in human plasma by head-space solid-phase microextraction and gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1763-1768.	1.4	46
34	An interior needle electropolymerized pyrrole-based coating for headspace solid-phase dynamic extraction. Analytica Chimica Acta, 2009, 634, 209-214.	2.6	46
35	Gas chromatography with atomic emission detection: a powerful technique. TrAC - Trends in Analytical Chemistry, 2002, 21, 618-626.	5.8	44
36	Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Mikrochimica Acta, 2016, 183, 195-202.	2.5	44

#	Article	IF	CITATIONS
37	Membrane protected conductive polymer as microâ \in SPE device for the determination of triazine herbicides in aquatic media. Journal of Separation Science, 2010, 33, 1132-1138.	1.3	36
38	An unbreakable on-line approach towards sol–gel capillary microextraction. Journal of Chromatography A, 2011, 1218, 3952-3957.	1.8	36
39	Reprint of: Extraction of fluoxetine from aquatic and urine samples using sodium dodecyl sulfate-coated iron oxide magnetic nanoparticles followed by spectrofluorimetric determination. Analytica Chimica Acta, 2012, 716, 61-65.	2.6	35
40	Electrospun modified silica-polyamide nanocomposite as a novel fiber coating. Journal of Chromatography A, 2014, 1324, 11-20.	1.8	35
41	Core–shell electrospun polybutylene terephthalate/polypyrrole hollow nanofibers for micro-solid phase extraction. Journal of Chromatography A, 2016, 1434, 19-28.	1.8	35
42	A high-throughput approach for the determination of pesticide residues in cucumber samples using solid-phase microextraction on 96-well plate. Analytica Chimica Acta, 2012, 740, 36-42.	2.6	33
43	On-line Micro Solid-Phase Extraction of Clodinafop Propargyl from Water, Soil and Wheat Samples Using Electrospun Polyamide Nanofibers. Chromatographia, 2014, 77, 723-728.	0.7	33
44	A superhydrophobic silica aerogel with high surface area for needle trap microextraction of chlorobenzenes. Mikrochimica Acta, 2017, 184, 2151-2156.	2.5	32
45	Graphene oxide-starch-based micro-solid phase extraction of antibiotic residues from milk samples. Journal of Chromatography A, 2019, 1591, 7-14.	1.8	32
46	Coupling of a Modified In-Tube Solid Phase Microextraction Technique with High Perfor- mance Liquid Chromatography-Fluorescence Detection for the Ultra-Trace Determination of Polycyclic Aromatic Hydrocarbons in Water Samples. Chromatographia, 2004, 59, 501.	0.7	31
47	Headspace solvent microextraction as a simple and highly sensitive sample pretreatment technique for ultra trace determination of geosmin in aquatic media. Journal of Separation Science, 2006, 29, 57-65.	1.3	31
48	Trace determination of free formaldehyde in DTP and DT vaccines and diphtheria–tetanus antigen by single drop microextraction and gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 287-292.	1.4	29
49	In situ solid-phase microextraction and post on-fiber derivatization combined with gas chromatography–mass spectrometry for determination of phenol in occupational air. Analytica Chimica Acta, 2012, 742, 17-21.	2.6	29
50	Sol–gel-based molecularly imprinted xerogel for capillary microextraction. Analytical and Bioanalytical Chemistry, 2012, 404, 1597-1602.	1.9	28
51	A highly thermal-resistant electrospun-based polyetherimide nanofibers coating for solid-phase microextraction. Analytical and Bioanalytical Chemistry, 2014, 406, 2141-2149.	1.9	28
52	Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers. Analytica Chimica Acta, 2016, 934, 88-97.	2.6	27
53	Modified solvent microextraction with back extraction combined with liquid chromatography-fluorescence detection for the determination of citalopram in human plasma. Analytica Chimica Acta, 2008, 610, 211-216.	2.6	26
54	Magnetic Nanoparticle-Based Micro-Solid Phase Extraction and GC–MS Determination of Oxadiargyl in Aqueous Samples. Chromatographia, 2011, 74, 483-488.	0.7	26

#	Article	IF	CITATIONS
55	Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating. Journal of Chromatography A, 2015, 1375, 8-16.	1.8	26
56	An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine. Journal of Chromatography A, 2017, 1491, 1-8.	1.8	26
57	Silica aerogel coated on metallic wire by phase separation of polystyrene for in–tube solid phase microextraction. Journal of Chromatography A, 2017, 1500, 69-75.	1.8	26
58	Recent advances in capillary microextraction. TrAC - Trends in Analytical Chemistry, 2015, 73, 64-80.	5.8	25
59	New Grafted Nanosilica-Based Sorbent for Needle Trap Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples Followed by GC/MS. Chromatographia, 2011, 74, 429-436.	0.7	24
60	Electrospun polyamide–polyethylene glycol nanofibers for headspace solidâ€phase microextration. Journal of Separation Science, 2014, 37, 1880-1886.	1.3	24
61	Magnetic and electric field assisted electrospun polyamide nanofibers for on-line μ-solid phase extraction and HPLC. RSC Advances, 2014, 4, 52590-52597.	1.7	23
62	A magnetic multifunctional dendrimeric coating on a steel fiber for solid phase microextraction of chlorophenols. Mikrochimica Acta, 2017, 184, 2201-2209.	2.5	23
63	Porous eco–friendly fibers for on–line micro solid–phase extraction of nonsteroidal anti–inflammatory drugs from urine and plasma samples. Journal of Chromatography A, 2018, 1574, 18-26.	1.8	23
64	A flow injection μ-solid phase extraction system based on electrospun polyaniline nanocomposite. Journal of Chromatography A, 2016, 1433, 34-40.	1.8	22
65	Role of precursors and coating polymers in sol–gel chemistry toward enhanced selectivity and efficiency in solid phase microextraction. Analytica Chimica Acta, 2012, 742, 45-53.	2.6	21
66	Generation of arylnitrenium ions by nitro-reduction and gas-phase synthesis of N-Heterocycles. Journal of the American Society for Mass Spectrometry, 2004, 15, 1675-1688.	1.2	20
67	Sol-Gel-based SPME and GC–MS for Trace Determination of Geosmin in Water and Apple Juice Samples. Chromatographia, 2007, 66, 779-783.	0.7	20
68	A 3D nanoscale polyhedral oligomeric silsesquioxanes network for microextraction of polycyclic aromatic hydrocarbons. Mikrochimica Acta, 2018, 185, 418.	2.5	20
69	Polypyrrole nanowires network for convenient and highly efficient microextraction in packed syringe. Analytical Methods, 2011, 3, 2630.	1.3	19
70	High-throughput micro-solid phase extraction on 96-well plate using dodecyl methacrylate-ethylen glycol dimethacrylate monolithic copolymer. Analytica Chimica Acta, 2013, 792, 59-65.	2.6	18
71	A conically fixed position single drop microextraction method for isolation of aryloxyphenoxypropionate herbicides from aquatic media. Analytical Methods, 2013, 5, 4846.	1.3	18
72	Indirect ultra-trace determination of nitrate and nitrite in food samples by in-syringe liquid microextraction and electrothermal atomic absorption spectrometry. Microchemical Journal, 2018, 142, 135-139.	2.3	18

#	Article	lF	CITATIONS
73	Immersed solâ€gel based aminoâ€functionalized SPME fiber and HPLC combined with postâ€column photochemically induced fluorimetry derivatization and fluorescence detection of pyrethroid insecticides from water samples. Journal of Separation Science, 2009, 32, 2912-2918.	1.3	17
74	Novel unbreakable solidâ€phase microextraction fiber by electrodeposition of silica sol–gel on gold. Journal of Separation Science, 2011, 34, 3246-3252.	1.3	17
75	Grafting the sol–gel based sorbents by diazonium salts: A novel approach toward unbreakable capillary microextraction. Journal of Chromatography A, 2013, 1318, 58-64.	1.8	17
76	Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating. Analytica Chimica Acta, 2015, 863, 20-28.	2.6	16
77	Sol–gel-based silver nanoparticles-doped silica – Polydiphenylamine nanocomposite for micro-solid-phase extraction. Analytica Chimica Acta, 2015, 886, 56-65.	2.6	16
78	A polythiophene–silver nanocomposite for headspace needle trap extraction. Journal of Chromatography A, 2016, 1460, 1-8.	1.8	16
79	Super-porous semi-interpenetrating polymeric composite prepared in straw for micro solid phase extraction of antibiotics from honey, urine and wastewater. Journal of Chromatography A, 2020, 1631, 461576.	1.8	16
80	Silane–based modified papers and their extractive phase roles in a microfluidic platform. Analytica Chimica Acta, 2020, 1128, 31-41.	2.6	16
81	Preparation and evaluation of various banana-based biochars together with ultra-high performance liquid chromatography-tandem mass spectrometry for determination of diverse pesticides in fruiting vegetables. Food Chemistry, 2021, 360, 130085.	4.2	16
82	Novel unbreakable solid-phase microextraction fibers on stainless steel wire and application for the determination of oxadiargyl in environmental and agricultural samples in combination with gas chromatography–mass spectrometry. Talanta, 2014, 128, 231-236.	2.9	15
83	Electrospun titania sol-gel-based ceramic composite nanofibers for online micro- solid-phase extraction with high-performance liquid chromatography. Journal of Separation Science, 2014, 37, 1982-1988.	1.3	15
84	A single–step synthesized supehydrophobic melamine formaldehyde foam for trace determination of volatile organic pollutants. Journal of Chromatography A, 2017, 1525, 10-16.	1.8	15
85	Electrospun magnetic polybutylene terephthalate nanofibers for thin film microextraction. Journal of Separation Science, 2017, 40, 3857-3865.	1.3	15
86	Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Mikrochimica Acta, 2018, 185, 322.	2.5	15
87	Amine modified magnetic polystyrene for extraction of drugs from urine samples. Journal of Chromatography A, 2019, 1602, 107-116.	1.8	15
88	Liquid–liquid–liquid microextraction followed by HPLC with UV detection for quantitation of ephedrine in urine. Journal of Separation Science, 2008, 31, 3212-3217.	1.3	14
89	Silver Nanoparticles–Polyaniline Nanocomposite for Microextraction in Packed Syringe. Chromatographia, 2014, 77, 397-403.	0.7	14
90	Polyamide/titania hollow nanofibers prepared by core–shell electrospinning as a microextractive phase in a fabricated sandwiched format microfluidic device. Journal of Chromatography A, 2017, 1528, 1-9.	1.8	14

#	Article	IF	CITATIONS
91	A Polypyrrole-Based Sorptive Microextraction Coating for Preconcentration of Malathion from Aquatic Media. Chromatographia, 2011, 74, 731-735.	0.7	13
92	Immersed solvent microextraction of aryloxyphenoxypropionate herbicides from aquatic media. International Journal of Environmental Analytical Chemistry, 2013, 93, 450-460.	1.8	13
93	Application of sol–gel based molecularly imprinted xerogel for on-line capillary microextraction of fentanyl from urine and plasma samples. Analytical Methods, 2013, 5, 7096.	1.3	12
94	Resorcinol–formaldehyde xerogel as a microâ€solidâ€phase extraction sorbent for the determination of herbicides in aquatic environmental samples. Journal of Separation Science, 2015, 38, 2305-2311.	1.3	12
95	An electrospun magnetic nanocomposite for a facile micro-scaled analysis approach. Analytical Methods, 2014, 6, 5838-5846.	1.3	11
96	A core–shell titanium dioxide polyaniline nanocomposite for the needleâ€ŧrap extraction of volatile organic compounds in urine samples. Journal of Separation Science, 2017, 40, 1985-1992.	1.3	11
97	Nanostructured molybdenum oxide in a 3D metal organic framework and in a 2D polyoxometalate network for extraction of chlorinated benzenes prior to their quantification by GC–MS. Mikrochimica Acta, 2018, 185, 536.	2.5	11
98	Imprinted silica nanofiber formation <i>via</i> sol–gel-electrospinning for selective micro solid phase extraction. New Journal of Chemistry, 2018, 42, 13864-13872.	1.4	10
99	Toward a comprehensive microextraction/determination unit: A chip silicon rubber polyaniline-based system and its direct coupling with gas chromatography and mass spectrometry. Journal of Separation Science, 2016, 39, 4227-4233.	1.3	9
100	Roles of metal, ligand and post synthetic modification on metal organic frameworks to extend their hydrophobicity and applicability toward ultra–trace determination of priority organic pollutants. Analytica Chimica Acta, 2020, 1125, 231-246.	2.6	9
101	Microwaveâ€assisted extraction and highâ€throughput monolithicâ€polymerâ€based microâ€solidâ€phase extraction of organophosphorus, triazole, and organochlorine residues in apple. Journal of Separation Science, 2016, 39, 576-583.	1.3	8
102	A turn-on graphene quantum dot and graphene oxide based fluorometric aptasensor for the determination of telomerase activity. Mikrochimica Acta, 2019, 186, 785.	2.5	8
103	Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath. Analytica Chimica Acta, 2022, 1198, 339550.	2.6	8
104	A combined micro-solid phase-single drop microextraction approach for trace enrichment of volatile organic compounds. Analytical Methods, 2015, 7, 6514-6519.	1.3	7
105	A polypyrrole film with dual counter ions as a highly efficient medium for headspace solid-phase extraction of chloro-organic compounds. Mikrochimica Acta, 2015, 182, 617-624.	2.5	7
106	Electrospun superhydrophobic polystyrene hollow fiber as a probe for liquid-liquid microextraction with gas chromatography-mass spectrometry. Journal of Separation Science, 2016, 39, 3782-3788.	1.3	7
107	Electroentrapment of Polyaniline in [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane-Derived Xerogel: A Facile Methodology Towards Molecularly Imprinted Xerogels. Chromatographia, 2014, 77, 1185-1194.	0.7	6
108	Wireless electrochemical preparation of gradient nanoclusters consisting of copper(II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes. Mikrochimica Acta, 2018, 185, 80.	2.5	6

#	Article	IF	CITATIONS
109	Reduced graphene oxide–melamine formaldehyde as a highly efficient platform for needle trap microextraction of volatile organic compounds. Microchemical Journal, 2020, 157, 104932.	2.3	6
110	Preparation of amine–modified lignin and its applicability toward online micro–solid phase extraction of valsartan and losartan in urine samples. Journal of Chromatography A, 2021, 1643, 462081.	1.8	6
111	Turn-off chelation-enhanced fluorescence sensing of carbon dot-metallic deep eutectic solvent by imidazole-based small molecules. Sensors and Actuators B: Chemical, 2021, 344, 130228.	4.0	6
112	The geometrical characteristics of nickel-based metal organic framework on its entrapment capability. Journal of Chromatography A, 2020, 1610, 460551.	1.8	5
113	Immobilization of synthesized phenyl-enriched magnetic nanoparticles in a fabricated Y–Y shaped micro-channel containing microscaled hedges as a microextraction platform. Analytica Chimica Acta, 2020, 1136, 51-61.	2.6	4
114	Polypropylene-Based Microextraction Method for Determination of Fluoxetine in Human Urine Samples. Analytical Letters, 2012, 45, 1777-1785.	1.0	3
115	Gradient extractive phase prepared by controlled rate infusion method: An applicable approach in solid phase microextraction for non–targeted analysis. Journal of Chromatography A, 2018, 1574, 130-135.	1.8	3
116	Toward higher extraction and enrichment factors via a doubleâ€reservoirs microfluidic device as a microâ€extractive platform. Journal of Separation Science, 2019, 42, 2985-2992.	1.3	3
117	Generic extraction medium: From highly polar to non-polar simultaneous determination. Analytica Chimica Acta, 2019, 1066, 1-12.	2.6	3
118	Electrospun nanofibers. , 2020, , 311-339.		3
119	Evaluation of prepared natural polymers in the extraction of chlorobenzenes from environmental samples: Sol–gel–based cellulose acetate-phenyltriethoxysilane fibers. Microchemical Journal, 2018, 142, 265-272.	2.3	2
120	A horizontally oriented setup for liquid–liquid–liquid microextraction of estrogens. Analytical Methods, 2013, 5, 6517.	1.3	1
121	2 Solid-Phase Microextraction and Related Techniques. , 2014, , 29-87.		1
122	Immobilization of functionalized gold nanoparticles in a well-organized silicon-based microextracting chip followed by online thermal desorption-gas chromatography. Microchemical Journal, 2018, 143, 205-211.	2.3	1
123	Implementing a superhydrophobic substrate in immersed solvent–supported microextraction as a novel strategy for determination of organic pollutants in water samples. Ecotoxicology and Environmental Safety, 2018, 163, 104-110.	2.9	1
124	Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in–tube microextraction of volatile organic compounds in saliva. Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113599.	1.4	1
125	A stable nitrogen-rich zinc-based metal organic framework to investigate the structural similarity effect on the sorption efficiency of nitrogen-containing compounds. Microchemical Journal, 2021, 170, 106711.	2.3	1