Ruiyuan Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3198894/ruiyuan-liu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14
papers2,125
citations14
h-index14
g-index14
ext. papers2,525
ext. citations26.9
avg, IF4.82
L-index

#	Paper	IF	Citations
14	Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. <i>Nature Energy</i> , 2016 , 1,	62.3	704
13	Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications. <i>Advanced Materials</i> , 2016 , 28, 10024-10032	24	212
12	Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing. <i>Advanced Materials</i> , 2018 , 30, 1705195	24	194
11	Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity- and Pressure-Sensing Skins. <i>Advanced Materials</i> , 2018 , 30, e186	o 7† 14	180
10	Vitrimer Elastomer-Based Jigsaw Puzzle-Like Healable Triboelectric Nanogenerator for Self-Powered Wearable Electronics. <i>Advanced Materials</i> , 2018 , 30, e1705918	24	173
9	Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement. <i>Advanced Functional Materials</i> , 2017 , 27, 1606695	15.6	110
8	Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5. <i>Nano Letters</i> , 2017 , 17, 4240-4247	11.5	106
7	Light-Triggered Pyroelectric Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared Photosensing. <i>ACS Nano</i> , 2017 , 11, 8339-8345	16.7	104
6	Self-Powered Si/CdS Flexible Photodetector with Broadband Response from 325 to 1550 nm Based on Pyro-phototronic Effect: An Approach for Photosensing below Bandgap Energy. <i>Advanced Materials</i> , 2018 , 30, 1705893	24	95
5	A Self-Powered Dynamic Displacement Monitoring System Based on Triboelectric Accelerometer. <i>Advanced Energy Materials</i> , 2017 , 7, 1700565	21.8	75
4	Complementary Electromagnetic-Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. <i>Advanced Functional Materials</i> , 2018 , 28, 1705808	15.6	68
3	Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode. <i>Advanced Materials</i> , 2017 , 29, 1701412	24	62
2	An Efficient Ultra-Flexible Photo-Charging System Integrating Organic Photovoltaics and Supercapacitors. <i>Advanced Energy Materials</i> , 2020 , 10, 2000523	21.8	22
1	Flexible self-charging power sources. Nature Reviews Materials,	73.3	20