Olga Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3198778/publications.pdf Version: 2024-02-01

		393982	500791
29	1,147	19	28
papers	citations	h-index	g-index
31	31	31	972
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Making of Plant Armor: The Periderm. Annual Review of Plant Biology, 2022, 73, 405-432.	8.6	30
2	Induced lignoâ€suberin vascular coating and tyramineâ€derived hydroxycinnamic acid amides restrict <i>Ralstonia solanacearum</i> colonization in resistant tomato. New Phytologist, 2022, 234, 1411-1429.	3.5	26
3	The making of suberin. New Phytologist, 2022, 235, 848-866.	3.5	42
4	Gene Downregulation in Potato Roots Using Agrobacterium rhizogenes-Mediated Transformation. Methods in Molecular Biology, 2021, 2354, 353-372.	0.4	0
5	Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Scientific Reports, 2021, 11, 12053.	1.6	13
6	Silencing of StRIK in potato suggests a role in periderm related to RNA processing and stress. BMC Plant Biology, 2021, 21, 409.	1.6	3
7	A chemical window into the impact of RNAi silencing of the StNAC103 gene in potato tuber periderms: Soluble metabolites, suberized cell walls, and antibacterial defense. Phytochemistry, 2021, 190, 112885.	1.4	1
8	Silencing against the conserved NAC domain of the potato StNAC103 reveals new NAC candidates to repress the suberin associated waxes in phellem. Plant Science, 2020, 291, 110360.	1.7	17
9	Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Scientific Reports, 2020, 10, 8011.	1.6	19
10	Agrobacterium tumefaciens and Agrobacterium rhizogenes -Mediated Transformation of Potato and the Promoter Activity of a Suberin Gene by GUS Staining. Journal of Visualized Experiments, 2019, , .	0.2	7
11	Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. Phytochemistry, 2018, 147, 30-48.	1.4	32
12	Polymer inclusion membrane to access Zn speciation: Comparison with root uptake. Science of the Total Environment, 2018, 622-623, 316-324.	3.9	20
13	A comparative transcriptomic approach to understanding the formation of cork. Plant Molecular Biology, 2018, 96, 103-118.	2.0	35
14	Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four <i>Solanum tuberosum</i> Potato Cultivars. Journal of Agricultural and Food Chemistry, 2017, 65, 2258-2274.	2.4	35
15	Silencing of the potato <i>StNAC103</i> gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Journal of Experimental Botany, 2016, 67, 5415-5427.	2.4	56
16	The Identification and Quantification of Suberin Monomers of Root and Tuber Periderm from Potato (<i>Solanum tuberosum</i>) as Fatty Acyl <i>tert</i> Butyldimethylsilyl Derivatives. Phytochemical Analysis, 2016, 27, 326-335.	1.2	20
17	Defensive Armor of Potato Tubers: Nonpolar Metabolite Profiling, Antioxidant Assessment, and Solid-State NMR Compositional Analysis of Suberin-Enriched Wound-Healing Tissues. Journal of Agricultural and Food Chemistry, 2015, 63, 6810-6822.	2.4	20
18	Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester. Phytochemistry, 2015, 117, 209-219.	1.4	40

Olga Serra

#	Article	IF	CITATIONS
19	Deconstructing a Plant Macromolecular Assembly: Chemical Architecture, Molecular Flexibility, And Mechanical Performance of Natural and Engineered Potato Suberins. Biomacromolecules, 2014, 15, 799-811.	2.6	26
20	Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 7963-7975.	2.4	24
21	The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. Journal of Experimental Botany, 2013, 64, 3225-3236.	2.4	66
22	Mini-review: What nuclear magnetic resonance can tell us about protective tissues. Plant Science, 2012, 195, 120-124.	1.7	25
23	A potato skin SSH library yields new candidate genes for suberin biosynthesis and periderm formation. Planta, 2011, 233, 933-945.	1.6	39
24	A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. Plant Journal, 2010, 62, 277-290.	2.8	120
25	Unraveling ferulate role in suberin and periderm biology by reverse genetics. Plant Signaling and Behavior, 2010, 5, 953-958.	1.2	24
26	<i>CYP86A33</i> -Targeted Gene Silencing in Potato Tuber Alters Suberin Composition, Distorts Suberin Lamellae, and Impairs the Periderm's Water Barrier Function Â. Plant Physiology, 2009, 149, 1050-1060.	2.3	120
27	Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. Journal of Experimental Botany, 2009, 60, 697-707.	2.4	95
28	Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR. Tree Physiology, 2008, 28, 743-751.	1.4	43
29	A Genomic Approach to Suberin Biosynthesis and Cork Differentiation. Plant Physiology, 2007, 144, 419,431	2.3	147