Jan-Eric Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3198515/publications.pdf

Version: 2024-02-01

623734 580821 1,138 29 14 25 citations g-index h-index papers 30 30 30 2136 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. Journal of Experimental Medicine, 2013, 210, 2951-2965.	8.5	340
2	The Th17 immune response in renal inflammation. Kidney International, 2010, 77, 1070-1075.	5.2	139
3	Clonal expansion and activation of tissue-resident memory-like T $<$ sub $>$ H $<$ /sub $>$ 17 cells expressing GM-CSF in the lungs of patients with severe COVID-19. Science Immunology, 2021, 6, .	11.9	125
4	IL-33–Mediated Expansion of Type 2 Innate Lymphoid Cells Protects from Progressive Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 2068-2080.	6.1	93
5	Tissue-Resident Lymphocytes in the Kidney. Journal of the American Society of Nephrology: JASN, 2018, 29, 389-399.	6.1	69
6	Pathogen-induced tissue-resident memory T $<$ sub $>$ H $<$ /sub $>$ 17 (T $<$ sub $>$ RM $<$ /sub $>$ 17) cells amplify autoimmune kidney disease. Science Immunology, 2020, 5, .	11.9	58
7	IL-17F Promotes Tissue Injury in Autoimmune Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 3666-3677.	6.1	45
8	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	8.2	34
9	IL22BP Mediates the Antitumor Effects of Lymphotoxin Against Colorectal Tumors in Mice and Humans. Gastroenterology, 2020, 159, 1417-1430.e3.	1.3	31
10	IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathogens, 2020, 16, e1009121.	4.7	29
11	TÂcellâ€derived IFNâ€Î³ downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus. European Journal of Immunology, 2018, 48, 1364-1375.	2.9	27
12	Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Seminars in Immunopathology, 2018, 40, 393-406.	6.1	27
13	Natural Killer Cells in Kidney Health and Disease. Frontiers in Immunology, 2019, 10, 587.	4.8	21
14	Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in Adriamycin-induced nephropathy. Kidney International, 2020, 98, 615-629.	5.2	18
15	IL-17 Receptor C Signaling Controls CD4+ TH17 Immune Responses and Tissue Injury in Immune-Mediated Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 3081-3098.	6.1	14
16	Glomerulopathy Induced by Immunization with a Peptide Derived from the Goodpasture Antigen $\hat{l}\pm3IV$ -NC1. Journal of Immunology, 2015, 194, 3646-3655.	0.8	12
17	Validation of a Prospective Urinalysis-Based Prediction Model for ICU Resources and Outcome of COVID-19 Disease: A Multicenter Cohort Study. Journal of Clinical Medicine, 2021, 10, 3049.	2.4	12
18	Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathogens, 2022, 18, e1010430.	4.7	12

#	Article	IF	CITATIONS
19	Glomerulonephritis therapy: is there a role for green tea?. Kidney International, 2011, 80, 563-564.	5.2	8
20	Endogenous IL-22 is dispensable for experimental glomerulonephritis. American Journal of Physiology - Renal Physiology, 2019, 316, F712-F722.	2.7	7
21	T helper cell trafficking in autoimmune kidney diseases. Cell and Tissue Research, 2021, 385, 281-292.	2.9	6
22	Innate Lymphoid Cells in Renal Inflammation. Frontiers in Immunology, 2020, 11, 72.	4.8	5
23	Natural killers: the bad guys inÂfibrosis?. Kidney International, 2017, 92, 9-11.	5.2	2
24	Innate lymphoid cells: key players in tissue-specific immunity. Seminars in Immunopathology, 2018, 40, 315-317.	6.1	2
25	Conventional NK Cells and Type 1 Innate Lymphoid Cells Do Not Influence Pathogenesis of Experimental Glomerulonephritis. Journal of Immunology, 2022, 208, 1585-1594.	0.8	2
26	Title is missing!. , 2020, 16, e1009121.		0
27	Title is missing!. , 2020, 16, e1009121.		O
28	Title is missing!. , 2020, 16, e1009121.		0
29	Title is missing!. , 2020, 16, e1009121.		O