
Yiguang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197953/publications.pdf Version: 2024-02-01

YICHANG WANG

#	Article	IF	CITATIONS
1	Rethinking nanoparticulate polymer–drug conjugates for cancer theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	5
2	A pH-/Enzyme-Responsive Nanoparticle Selectively Targets Endosomal Toll-like Receptors to Potentiate Robust Cancer Vaccination. Nano Letters, 2022, 22, 2978-2987.	4.5	33
3	A pHâ€Responsive Nanoparticle Library with Precise pH Tunability by Coâ€Polymerization with Non″onizable Monomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
4	Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging. Nature Communications, 2022, 13, 2004.	5.8	13
5	A pyroptosis nanotuner for cancer therapy. Nature Nanotechnology, 2022, 17, 788-798.	15.6	84
6	Sequential Modulations of Tumor Vasculature and Stromal Barriers Augment the Active Targeting Efficacy of Antibodyâ€Modified Nanophotosensitizer in Desmoplastic Ovarian Carcinoma. Advanced Science, 2021, 8, 2002253.	5.6	21
7	Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nature Communications, 2021, 12, 2385.	5.8	25
8	Boosting innate and adaptive antitumor immunity via a biocompatible and carrier-free nanovaccine engineered by the bisphosphonates-metal coordination. Nano Today, 2021, 37, 101097.	6.2	11
9	Precise Monitoring of Singlet Oxygen in Specific Endocytic Organelles by Super-pH-Resolved Nanosensors. ACS Applied Materials & Interfaces, 2021, 13, 18533-18544.	4.0	20
10	pHâ€Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes. Angewandte Chemie - International Edition, 2021, 60, 14512-14520.	7.2	35
11	Cooperative Self-Assembled Nanoparticle Induces Sequential Immunogenic Cell Death and Toll-Like Receptor Activation for Synergistic Chemo-immunotherapy. Nano Letters, 2021, 21, 4371-4380.	4.5	39
12	pHâ€Amplified CRET Nanoparticles for In Vivo Imaging of Tumor Metastatic Lymph Nodes. Angewandte Chemie, 2021, 133, 14633-14641.	1.6	2
13	A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging. Nature Communications, 2021, 12, 5460.	5.8	37
14	Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Theranostics, 2020, 10, 1213-1229.	4.6	48
15	A magnetism/laser-auxiliary cascaded drug delivery to pulmonary carcinoma. Acta Pharmaceutica Sinica B, 2020, 10, 1549-1562.	5.7	5
16	pH/Cathepsin B Hierarchicalâ€Responsive Nanoconjugates for Enhanced Tumor Penetration and Chemoâ€Immunotherapy. Advanced Functional Materials, 2020, 30, 2003757.	7.8	57
17	Laser-Triggered Injectable Gelatin Hydrogels System for Combinatorial Upconversion Fluorescence Imaging and Antitumor Chemophotothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3722-3729.	2.3	15
18	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5.7	529

YIGUANG WANG

#	Article	IF	CITATIONS
19	Redox-Activated Porphyrin-Based Liposome Remote-Loaded with Indoleamine 2,3-Dioxygenase (IDO) Inhibitor for Synergistic Photoimmunotherapy through Induction of Immunogenic Cell Death and Blockage of IDO Pathway. Nano Letters, 2019, 19, 6964-6976.	4.5	131
20	A pH-Activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials, 2019, 213, 119219.	5.7	80
21	Quick-Responsive Polymer-Based Thermosensitive Liposomes for Controlled Doxorubicin Release and Chemotherapy. ACS Biomaterials Science and Engineering, 2019, 5, 2316-2329.	2.6	19
22	Ultra-pH-sensitive indocyanine green-conjugated nanoprobes for fluorescence imaging-guided photothermal cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 287-296.	1.7	20
23	Intestinal Mucin Induces More Endocytosis but Less Transcytosis of Nanoparticles across Enterocytes by Triggering Nanoclustering and Strengthening the Retrograde Pathway. ACS Applied Materials & Interfaces, 2018, 10, 11443-11456.	4.0	52
24	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129
25	Lanthanide-doped upconversion nanoparticles complexed with nano-oxide graphene used for upconversion fluorescence imaging and photothermal therapy. Biomaterials Science, 2018, 6, 877-884.	2.6	58
26	Localized co-delivery of collagenase and trastuzumab by thermosensitive hydrogels for enhanced antitumor efficacy in human breast xenograft. Drug Delivery, 2018, 25, 1495-1503.	2.5	54
27	Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nature Communications, 2018, 9, 2393.	5.8	93
28	Anisotropy in Shape and Ligandâ€Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome. Advanced Functional Materials, 2017, 27, 1700406.	7.8	16
29	A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering, 2017, 1, .	11.6	163
30	Shape Anisotropy: Anisotropy in Shape and Ligandâ€Conjugation of Hybrid Nanoparticulates Manipulates the Mode of Bio–Nano Interaction and Its Outcome (Adv. Funct. Mater. 31/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
31	Digitization of Endocytic pH by Hybrid Ultraâ€pHâ€Sensitive Nanoprobes at Singleâ€Organelle Resolution. Advanced Materials, 2017, 29, 1603794.	11.1	69
32	Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment. Theranostics, 2017, 7, 538-558.	4.6	260
33	A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both $\hat{I}\pm\nu\hat{I}^2$ 3 Targeting and Reduction-Triggered Release for Maytansinoid. Theranostics, 2017, 7, 3306-3318.	4.6	22
34	Lysosome-oriented, dual-stage pH-responsive polymeric micelles for β-lapachone delivery. Journal of Materials Chemistry B, 2016, 4, 7429-7440.	2.9	10
35	Esterase-activatable \hat{l}^2 -lapachone prodrug micelles for NQO1-targeted lung cancer therapy. Journal of Controlled Release, 2015, 200, 201-211.	4.8	88
36	Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Reports, 2015, 12, 371-379.	2.9	40

YIGUANG WANG

#	Article	IF	CITATIONS
37	A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nature Communications, 2015, 6, 8524.	5.8	71
38	Prodrug Strategy to Achieve Lyophilizable, High Drug Loading Micelle Formulations Through Diester Derivatives of Î²â€Łapachone. Advanced Healthcare Materials, 2014, 3, 1210-1216.	3.9	27
39	Chaotropicâ€Anionâ€Induced Supramolecular Selfâ€Assembly of Ionic Polymeric Micelles. Angewandte Chemie - International Edition, 2014, 53, 8074-8078.	7.2	40
40	A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nature Materials, 2014, 13, 204-212.	13.3	695
41	In vivo optical imaging of folate receptorâ€Î² in head and neck squamous cell carcinoma. Laryngoscope, 2014, 124, E312-9.	1.1	28
42	Ultra-pH-Sensitive Nanoprobe Library with Broad pH Tunability and Fluorescence Emissions. Journal of the American Chemical Society, 2014, 136, 11085-11092.	6.6	241
43	Multiâ€Chromatic pHâ€Activatable ¹⁹ Fâ€MRI Nanoprobes with Binary ON/OFF pH Transitions and Chemicalâ€Shift Barcodes. Angewandte Chemie - International Edition, 2013, 52, 8074-8078.	7.2	106
44	Polymeric micelles for enhanced lymphatic drug delivery to treat metastatic tumors. Journal of Controlled Release, 2013, 171, 133-142.	4.8	60
45	An NQO1 Substrate with Potent Antitumor Activity That Selectively Kills by PARP1-Induced Programmed Necrosis. Cancer Research, 2012, 72, 3038-3047.	0.4	121
46	Peptide PHSCNK as an integrin α5β1 antagonist targets stealth liposomes to integrin-overexpressing melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1152-1161.	1.7	33
47	Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH Stimuli. Journal of the American Chemical Society, 2012, 134, 7803-7811.	6.6	312
48	Stability Influences the Biodistribution, Toxicity, and Anti-tumor Activity of Doxorubicin Encapsulated in PEG-PE Micelles in Mice. Pharmaceutical Research, 2012, 29, 1977-1989.	1.7	16
49	Targeted delivery of a combination therapy consisting of combretastatin A4 and low-dose doxorubicin against tumor neovasculature. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 81-92.	1.7	59
50	Delivery of drugs to cell membranes by encapsulation in PEG–PE micelles. Journal of Controlled Release, 2012, 160, 637-651.	4.8	78
51	Overcoming Endosomal Barrier by Amphotericin B-Loaded Dual pH-Responsive PDMA- <i>b</i> -PDPA Micelleplexes for siRNA Delivery. ACS Nano, 2011, 5, 9246-9255.	7.3	218
52	Materializing sequential killing of tumor vasculature and tumor cells via targeted polymeric micelle system. Journal of Controlled Release, 2011, 149, 299-306.	4.8	70
53	Linkage with cathepsin B-sensitive dipeptide promotes the in vitro and in vivo anticancer activity of PEGylated tumor necrosis factor-alpha (TNF-α) against murine fibrosarcoma. Science China Life Sciences, 2011, 54, 128-138.	2.3	7
54	Tunable, Ultrasensitive pHâ€Responsive Nanoparticles Targeting Specific Endocytic Organelles in Living Cells. Angewandte Chemie - International Edition, 2011, 50, 6109-6114.	7.2	488

YIGUANG WANG

#	Article	IF	CITATIONS
55	Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs. Pharmaceutical Research, 2010, 27, 361-370.	1.7	58
56	Targeted Polymeric Micelle System for Delivery of Combretastatin A4 to Tumor Vasculature In Vitro. Pharmaceutical Research, 2010, 27, 1861-1868.	1.7	33
57	Nanoparticle delivery strategies to target doxorubicin to tumor cells and reduce side effects. Therapeutic Delivery, 2010, 1, 273-287.	1.2	46
58	NGR-modified micelles enhance their interaction with CD13-overexpressing tumor and endothelial cells. Journal of Controlled Release, 2009, 139, 56-62.	4.8	79
59	RGD-modified polymeric micelles as potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. Journal of Drug Targeting, 2009, 17, 459-467.	2.1	42
60	A pHâ€Responsive Nanoparticle Library with Precise pH Tunability by Coâ€Polymerization with Nonâ€Ionizable Monomers. Angewandte Chemie, 0, , .	1.6	0