Marcel Regelous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197875/publications.pdf

Version: 2024-02-01

44 papers 2,829 citations

29 h-index

172457

243625 44 g-index

44 all docs

44 docs citations

times ranked

44

2634 citing authors

#	Article	IF	CITATIONS
1	Effects of the Hydrous Domain in the Mantle Wedge on Magma Formation and Mixing at the Northeast Lau Spreading Center, SW Pacific. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	3
2	Extreme geochemical heterogeneity beneath the North Tonga Arc: Interaction of a subduction zone with intraplate seamount chains. Chemical Geology, 2022, 603, 120903.	3.3	3
3	Inverse response of 231Pa/230Th to variations of the Atlantic meridional overturning circulation in the North Atlantic intermediate water. Geo-Marine Letters, 2020, 40, 75-87.	1.1	1
4	Tellurium in Late Permianâ€Early Triassic Sediments as a Proxy for Siberian Flood Basalt Volcanism. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009064.	2.5	6
5	Chemical Evolution of Calc-alkaline Magmas during the Ascent through Continental Crust: Constraints from Methana, Aegean Arc. Journal of Petrology, 2020, 61, .	2.8	5
6	Geochemical mapping of a paleo-subduction zone beneath the Troodos Ophiolite. Chemical Geology, 2019, 523, 1-8.	3.3	22
7	Constraints on the Northwestern Atlantic Deep Water Circulation From ²³¹ Pa/ ²³⁰ Th During the Last 30,000 Years. Paleoceanography and Paleoclimatology, 2019, 34, 1945-1958.	2.9	8
8	Evidence for melting of subducting carbonate-rich sediments in the western Aegean Arc. Chemical Geology, 2018, 483, 463-473.	3.3	22
9	Thallium isotopes as tracers of recycled materials in subduction zones: Review and new data for lavas from Tonga-Kermadec and Central America. Journal of Volcanology and Geothermal Research, 2017, 339, 23-40.	2.1	30
10	Trace Element and Isotope Geochemistry of the Northern and Central Tongan Islands with an Emphasis on the Genesis of High Nb/Ta Signatures at the Northern Volcanoes of Tafahi and Niuatoputapu. Journal of Petrology, 2017, 58, 1073-1106.	2.8	24
11	Spatial variability of source composition and petrogenesis in rift and rift flank alkaline lavas from the Eger Rift, Central Europe. Chemical Geology, 2017, 455, 304-314.	3.3	23
12	Controls on melting at spreading ridges from correlated abyssal peridotite $\hat{a} \in \text{``mid-ocean ridge basalt compositions. Earth and Planetary Science Letters, 2016, 449, 1-11.}$	4.4	18
13	The timescales of magma evolution at mid-ocean ridges. Lithos, 2016, 240-243, 49-68.	1.4	15
14	Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, southeast Queensland, Australia. Lithos, 2015, 216-217, 196-210.	1.4	35
15	Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry, Geophysics, Geosystems, 2014, 15, 2380-2400.	2.5	42
16	Rapid determination of 26 elements in iron meteorites using matrix removal and membrane desolvating quadrupole ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 2379-2387.	3.0	12
17	Formation of the Troodos Ophiolite at a triple junction: Evidence from trace elements in volcanic glass. Chemical Geology, 2014, 386, 66-79.	3.3	50
18	Constraints on past plate and mantle motion from new ages for the Hawaiianâ€Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2013, 14, 4564-4584.	2.5	95

#	Article	IF	CITATIONS
19	High mantle temperatures following rifting caused by continental insulation. Nature Geoscience, 2013, 6, 391-394.	12.9	56
20	Volcanism on the flanks of the East Pacific Rise: Quantitative constraints on mantle heterogeneity and melting processes. Chemical Geology, 2012, 298-299, 41-56.	3.3	48
21	NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES. Astrophysical Journal, 2012, 758, 59.	4.5	83
22	Insights into mantle composition and mantle melting beneath midâ€ocean ridges from postspreading volcanism on the fossil Galapagos Rise. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	32
23	Lithospheric control on geochemical composition along the Louisville Seamount Chain. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	46
24	Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochimica Et Cosmochimica Acta, 2011, 75, 7906-7925.	3.9	96
25	Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas. Chemical Geology, 2010, 273, 46-54.	3.3	36
26	Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S. Lithos, 2009, 112, 57-72.	1.4	58
27	Neogene glacigenic debris flows on James Ross Island, northern Antarctic Peninsula, and their implications for regional climate history. Quaternary Science Reviews, 2009, 28, 3138-3160.	3.0	30
28	High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Bulletin of the Geological Society of America, 2009, 121, 857-868.	3.3	85
29	Mantle dynamics and mantle melting beneath Niuafo'ou Island and the northern Lau back-arc basin. Contributions To Mineralogy and Petrology, 2008, 156, 103-118.	3.1	39
30	Nickel isotope heterogeneity in the early Solar System. Earth and Planetary Science Letters, 2008, 272, 330-338.	4.4	174
31	Measurement of Femtogram Quantities of Protactinium in Silicate Rock Samples by Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2008, 80, 344-344.	6.5	10
32	The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology, 2007, 5, 311-335.	2.4	111
33	Partial melting processes above subducting plates: Constraints from 231Pa–235U disequilibria. Geochimica Et Cosmochimica Acta, 2006, 70, 480-503.	3.9	39
34	Petrogenesis of Hawaiian postshield lavas: Evidence from Nintoku Seamount, Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	13
35	Measurement of Femtogram Quantities of Protactinium in Silicate Rock Samples by Multicollector Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2004, 76, 3584-3589.	6.5	69
36	Contrasting geochemical patterns in the 3.7–3.8 Ga pillow basalt cores and rims, Isua greenstone belt, Southwest Greenland: implications for postmagmatic alteration processes. Geochimica Et Cosmochimica Acta, 2003, 67, 441-457.	3.9	137

3

#	Article	IF	CITATIONS
37	Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 2002, 199, 327-345.	4.4	230
38	Tracing the evolving flux from the subducting plate in the Tonga-Kermadec arc system using boron in volcanic glass. Geochimica Et Cosmochimica Acta, 2001, 65, 3347-3364.	3.9	34
39	Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30â€2N since 800 ka. Earth and Planetary Science Letters, 1999, 168, 45-63.	4.4	144
40	Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth and Planetary Science Letters, 1999, 173, 271-284.	4.4	109
41	Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. Journal of Geophysical Research, 1999, 104, 7067-7087.	3.3	220
42	147Smî—,143Nd, 146Smî—,142Nd systematics of early Archaean rocks and implications for crust-mantle evolution. Geochimica Et Cosmochimica Acta, 1996, 60, 3513-3520.	3.9	31
43	Magmatism and continental break-up in the South Atlantic: high precision40Ar-39Ar geochronology. Earth and Planetary Science Letters, 1994, 121, 333-348.	4.4	382
44	Paran \tilde{A}_i magmatism and the opening of the South Atlantic. Geological Society Special Publication, 1992, 68, 221-240.	1.3	103