Jiang Pu

List of Publications by Citations

Source: https://exaly.com/author-pdf/3197864/jiang-pu-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 2,594 41 33 g-index h-index citations papers 11.6 2,968 41 5.04 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
33	Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. <i>ACS Nano</i> , 2014 , 8, 923-30	16.7	732
32	Highly flexible MoS2 thin-film transistors with ion gel dielectrics. <i>Nano Letters</i> , 2012 , 12, 4013-7	11.5	663
31	Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. <i>ACS Nano</i> , 2014 , 8, 858	32 <u>1</u> 807	413
30	Highly Flexible and High-Performance Complementary Inverters of Large-Area Transition Metal Dichalcogenide Monolayers. <i>Advanced Materials</i> , 2016 , 28, 4111-9	24	90
29	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. <i>Applied Physics Letters</i> , 2013 , 103, 023505	3.4	75
28	Ambipolar organic single-crystal transistors based on ion gels. <i>Advanced Materials</i> , 2012 , 24, 4392-7	24	75
27	2D Materials for Large-Area Flexible Thermoelectric Devices. <i>Advanced Energy Materials</i> , 2020 , 10, 1907	2 842 8	72
26	Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors. <i>Scientific Reports</i> , 2014 , 4, 7293	4.9	52
25	Flexible and stretchable thin-film transistors based on molybdenum disulphide. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14996-5006	3.6	50
24	Synthesis of Large-Area InSe Monolayers by Chemical Vapor Deposition. <i>Small</i> , 2018 , 14, e1802351	11	48
23	Monolayer Transition Metal Dichalcogenides as Light Sources. <i>Advanced Materials</i> , 2018 , 30, e1707627	24	46
22	Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers. <i>Physical Review B</i> , 2016 , 94,	3.3	45
21	Thermoelectric Detection of Multi-Subband Density of States in Semiconducting and Metallic Single-Walled Carbon Nanotubes. <i>Small</i> , 2016 , 12, 3388-92	11	40
20	Self-Aligned and Scalable Growth of Monolayer WSe2MoS2 Lateral Heterojunctions. <i>Advanced Functional Materials</i> , 2018 , 28, 1706860	15.6	36
19	Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator. <i>Nature Communications</i> , 2016 , 7, 12356	17.4	32
18	A Versatile and Simple Approach to Generate Light Emission in Semiconductors Mediated by Electric Double Layers. <i>Advanced Materials</i> , 2017 , 29, 1606918	24	31
17	Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials. <i>Advanced Functional Materials</i> , 2020 , 30, 1908641	15.6	14

LIST OF PUBLICATIONS

16	Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device. <i>Science Advances</i> , 2019 , 5, eaav7282	14.3	13
15	Photodetection in pl junctions formed by electrolyte-gated transistors of two-dimensional crystals. <i>Applied Physics Letters</i> , 2016 , 109, 201107	3.4	12
14	Simultaneous enhancement of conductivity and Seebeck coefficient in an organic Mott transistor. <i>Applied Physics Letters</i> , 2016 , 109, 233301	3.4	9
13	Wafer-Scale Growth of One-Dimensional Transition-Metal Telluride Nanowires. <i>Nano Letters</i> , 2021 , 21, 243-249	11.5	8
12	Effects of electrolyte gating on photoluminescence spectra of large-area WSe2monolayer films. Japanese Journal of Applied Physics, 2016 , 55, 06GB02	1.4	6
11	Non-Fermi-liquid behavior and doping asymmetry in an organic Mott insulator interface. <i>Physical Review B</i> , 2019 , 100,	3.3	5
10	Air-stable and efficient electron doping of monolayer MoS by salt-crown ether treatment. <i>Nanoscale</i> , 2021 , 13, 8784-8789	7.7	4
9	Room-Temperature Chiral Light-Emitting Diode Based on Strained Monolayer Semiconductors. <i>Advanced Materials</i> , 2021 , 33, e2100601	24	4
8	Exciton Polarization and Renormalization Effect for Optical Modulation in Monolayer Semiconductors. <i>ACS Nano</i> , 2019 , 13, 9218-9226	16.7	3
7	CVD growth of large-area InS atomic layers and device applications. <i>Nanoscale</i> , 2020 , 12, 9366-9374	7.7	3
6	Nanowire-to-Nanoribbon Conversion in Transition-Metal Chalcogenides: Implications for One-Dimensional Electronics and Optoelectronics. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1775-1782	5.6	2
5	Electrolyte-Gating-Induced Metal-Like Conduction in Nonstoichiometric Organic Crystalline Semiconductors under Simultaneous Bandwidth Control. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900162	2.5	1
4	Semiconductors: Ambipolar Organic Single-Crystal Transistors Based on Ion Gels (Adv. Mater. 32/2012). <i>Advanced Materials</i> , 2012 , 24, 4463-4463	24	1
3	Electric Double Layer Doping of Charge-Ordered Insulators (BEDT-TTF)213 and (BETS)213. <i>Crystals</i> , 2021 , 11, 791	2.3	O
2	Nonpolymeric LECs: Recent Progress on Light-Emitting Electrochemical Cells with Nonpolymeric Materials (Adv. Funct. Mater. 33/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070223	15.6	
1	Room-Temperature Chiral Light-Emitting Diode Based on Strained Monolayer Semiconductors (Adv. Mater. 36/2021). <i>Advanced Materials</i> , 2021 , 33, 2170282	24	