List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197796/publications.pdf Version: 2024-02-01

FEDERICO ROTINI

#	Article	IF	CITATIONS
1	Refined metric for a-posteriori novelty assessments. Journal of Engineering Design, 2022, 33, 39-63.	2.3	7
2	Recent Findings About the Novelty Metric of Shah. Lecture Notes in Mechanical Engineering, 2022, , 705-711.	0.4	0
3	Systematic Design of Ancient Machines' Models: Leonardo da Vinci's Glider. Heritage, 2022, 5, 1593-161	l.1.9	1
4	The process for individuating TRIZ Inventive Principles: deterministic, stochastic or domain-oriented?. Design Science, 2021, 7, .	2.1	8
5	Novelty metrics in engineering design. Journal of Engineering Design, 2021, 32, 590-620.	2.3	13
6	Adapted Use of the TRIZ System Operator. Applied Sciences (Switzerland), 2021, 11, 6476.	2.5	4
7	Non-reactive test rig for combustor-turbine interaction studies in industrial gas turbines. Journal of Engineering, Design and Technology, 2021, ahead-of-print, .	1.7	1
8	NeoPalea: Compostable Composite Material for Packaging Applications. Smart Innovation, Systems and Technologies, 2021, , 357-367.	0.6	0
9	Effectiveness of different requirements checklists for novice designers. Journal of Integrated Design and Process Science, 2021, , 1-25.	0.5	2
10	Impact of Design Representations on Creativity of Design Outcomes. Journal of Integrated Design and Process Science, 2020, 23, 31-60.	0.5	7
11	A new eco-friendly packaging material made of straw and bioplastic. Journal of Agricultural Engineering, 2020, 51, 185-191.	1.5	8
12	Challenging COVID-19 with Creativity: Supporting Design Space Exploration for Emergency Ventilators. Applied Sciences (Switzerland), 2020, 10, 4955.	2.5	13
13	Subjectivity of novelty metrics based on idea decomposition. International Journal of Design Creativity and Innovation, 2020, 8, 223-239.	1.2	5
14	Usefulness of prototypes in conceptual design: students' view. International Journal on Interactive Design and Manufacturing, 2020, 14, 1305-1319.	2.2	9
15	Application of Systematic Design Methods to Cultural Heritage Preservation. IOP Conference Series: Materials Science and Engineering, 2020, 949, 012029.	0.6	3
16	Testing a New Structured Tool for Supporting Requirements' Formulation and Decomposition. Applied Sciences (Switzerland), 2020, 10, 3259.	2.5	14
17	Impact of missing attributes on the novelty metric of Shah et al Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2020, 31, 221-234.	2.1	16
18	Forms of stimuli and their effects on idea generation in terms of creativity metrics and non-obviousness. International Journal of Design Creativity and Innovation, 2020, 8, 147-164.	1.2	22

#	Article	IF	CITATIONS
19	Teaching and Learning Design Methods: Facing the Related Issues with TRIZ. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 589-598.	0.6	0
20	Enhancing functional decomposition and morphology with TRIZ: Literature review. Computers in Industry, 2018, 94, 1-15.	9.9	55
21	Investigating the future of the fuzzy front end: towards a change of paradigm in the very early design phases?. Journal of Engineering Design, 2018, 29, 644-664.	2.3	16
22	Exploiting TRIZ Tools for enhancing systematic conceptual design activities. Journal of Engineering Design, 2018, 29, 259-290.	2.3	34
23	Surprise and design creativity: investigating the drivers of unexpectedness. International Journal of Design Creativity and Innovation, 2017, 5, 29-47.	1.2	11
24	On the Factors Affecting Design Education Within a Multi-Disciplinary Class. Journal of Integrated Design and Process Science, 2017, 21, 21-44.	0.5	7
25	Product Planning techniques: investigating the differences between research trajectories and industry expectations. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2016, 27, 367-389.	2.1	18
26	A CAD tool to support idea generation in the product planning phase. Computer-Aided Design and Applications, 2016, 13, 490-502.	0.6	6
27	A new conceptual design approach for overcoming the flaws of functional decomposition and morphology. Journal of Engineering Design, 2016, 27, 438-468.	2.3	43
28	An original design approach for stimulating the ideation of new product features. Computers in Industry, 2016, 75, 80-100.	9.9	24
29	Preliminary Studies on Human Approaches to Inventive Design Tasks with a TRIZ Perspective. Procedia Engineering, 2015, 131, 39-49.	1.2	4
30	ARIZ85 and Patent-driven Knowledge Support. Procedia Engineering, 2015, 131, 291-302.	1.2	1
31	Predicting the competitive advantage of design projects to dynamically support decisions in product development. International Journal of Product Development, 2015, 20, 355.	0.2	3
32	An OTSM-TRIZ Based Framework Towards the Computer-Aided Identification of Cognitive Processes in Design Protocols. , 2015, , 99-117.		10
33	Business Process Reengineering driven by customer value: a support for undertaking decisions under uncertainty conditions. Computers in Industry, 2015, 68, 132-147.	9.9	28
34	Towards the fine-tuning of a predictive Kano model for supporting product and service design. Total Quality Management and Business Excellence, 2015, 26, 263-283.	3.8	27
35	Modularization vs. Innovation. International Journal of Innovation Science, 2014, 6, 29-42.	2.7	5
36	Multi-objective topology optimization through GA-based hybridization of partial solutions. Engineering With Computers, 2013, 29, 287-306.	6.1	12

#	Article	IF	CITATIONS
37	Assessing creativity of design projects: criteria for the service engineering field. International Journal of Design Creativity and Innovation, 2013, 1, 131-159.	1.2	9
38	Supporting product design by anticipating the success chances of new value profiles. Computers in Industry, 2013, 64, 421-435.	9.9	24
39	Question/answer techniques within CAD environments: An Investigation about the most Effective Interfaces. Computer-Aided Design and Applications, 2013, 10, 905-917.	0.6	2
40	About the Introduction of a Dialogue-Based Interaction within CAD Systems. Computer-Aided Design and Applications, 2013, 10, 499-514.	0.6	1
41	Prosthesis Socket Design through Shape Optimization. Computer-Aided Design and Applications, 2013, 10, 863-876.	0.6	4
42	Assessing the Performance of Computerized Tools for Inventive Design: Insights From Unsatisfactory Outcomes. , 2013, , 93-103.		1
43	Investigating the Patterns of Value-Oriented Innovations in Blue Ocean Strategy. International Journal of Innovation Science, 2012, 4, 123-142.	2.7	25
44	Innovation Trajectories within the Support of Decisions: Insights about S-Curve and Dominant Design Models. International Journal of Innovation Science, 2012, 4, 259-268.	2.7	6
45	Model and algorithm for computer-aided inventive problem analysis. CAD Computer Aided Design, 2012, 44, 961-986.	2.7	47
46	IPPR Implementation. Springer Series in Advanced Manufacturing, 2012, , 47-85.	0.5	0
47	Computer-aided embodiment design through the hybridization of mono objective optimizations for efficient innovation process. Computers in Industry, 2011, 62, 384-397.	9.9	16
48	Systematizing new value proposition through a TRIZ-based classification of functional features. Procedia Engineering, 2011, 9, 103-118.	1.2	15
49	Correlations between the evolution of contradictions and the law of identity increase. Procedia Engineering, 2011, 9, 236-250.	1.2	19
50	Networks of trends: systematic definition of evolutionary scenarios. Procedia Engineering, 2011, 9, 355-367.	1.2	17
51	From design optimization systems to geometrical contradictions. Procedia Engineering, 2011, 9, 473-483.	1.2	5
52	Systematic design through the integration of TRIZ and optimization tools. Procedia Engineering, 2011, 9, 674-679.	1.2	27
53	Wood pellet manufacturing improvements through product-driven process value analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225, 761-772.	2.4	2
54	Computer-Aided Problem Solving - Part 1: Objectives, Approaches, Opportunities. International Federation for Information Processing, 2011, , 117-131.	0.4	2

#	Article	IF	CITATIONS
55	From Computer-Aided (Detailed) Design to Automatic Topology and Shape Generation. , 2011, , 15-35.		1
56	Product-Driven Process Value Analysis. , 2011, , 387-396.		0
57	A new design paradigm for the development of custom-fit soft sockets for lower limb prostheses. Computers in Industry, 2010, 61, 513-523.	9.9	74
58	Process value analysis for business process re-engineering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224, 305-327.	2.4	17
59	Business re-engineering through integration of methods and tools for process innovation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2008, 222, 1715-1728.	2.4	9
60	Integrated design of turbomachinery through a STEP-XML platform for data exchange. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219, 547-554.	2.4	6
61	ISSUES RELATED TO MISSING ATTRIBUTES IN A-POSTERIORI NOVELTY ASSESSMENTS. , 0, , .		11
62	SUPPORTING SYSTEMATIC CONCEPTUAL DESIGN WITH TRIZ. , 0, , .		2