Lin Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197739/publications.pdf

Version: 2024-02-01

11	1,083	11	11
papers	citations	h-index	g-index
11	11	11	1809
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ultrafine Mo ₂ C nanoparticles embedded in an MOF derived N and P co-doped carbon matrix for an efficient electrocatalytic oxygen reduction reaction in zinc–air batteries. Nanoscale, 2022, 14, 2065-2073.	5.6	16
2	Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn $<$ sub $>$ 2 $<$ /sub $>$ 4 $<$ /sub $>$ photocatalyst for efficient photocatalytic H $<$ sub $>$ 2 $<$ /sub $>$ production. Materials Futures, 2022, 1, 035103.	8.4	11
3	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€5pecies Content for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 3244-3251.	13.8	167
4	Highly Efficient Porous Carbon Electrocatalyst with Controllable Nâ€Species Content for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 3270-3277.	2.0	20
5	Hierarchical Architectured Ternary Nanostructures Photocatalysts with In(OH) ₃ Nanocube on ZnIn ₂ S ₄ /NiS Nanosheets for Photocatalytic Hydrogen Evolution. Solar Rrl, 2020, 4, 2000027.	5.8	37
6	Self-supported three-dimensional Cu/Cu ₂ O–CuO/rGO nanowire array electrodes for an efficient hydrogen evolution reaction. Chemical Communications, 2018, 54, 6388-6391.	4.1	37
7	Znâ€MOFâ€74 Derived Nâ€Doped Mesoporous Carbon as pHâ€Universal Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1606190.	14.9	231
8	From Mixed-Metal MOFs to Carbon-Coated Core–Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to Co _{<i>x</i>} Ni _{1–<i>x</i>} @Co _{<i>y</i>} Ni _{1–<i>y</i>} O@C for the Oxygen Evolution Reaction. Inorganic Chemistry, 2017, 56, 5203-5209.	4.0	93
9	Znln ₂ S ₄ : A Photocatalyst for the Selective Aerobic Oxidation of Amines to Imines under Visible Light. ChemCatChem, 2014, 6, 2540-2543.	3.7	76
10	Rapid microwave-assisted syntheses of reduced graphene oxide (RGO)/Znln2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen evolutions under visible light. Applied Catalysis B: Environmental, 2014, 160-161, 552-557.	20.2	121
11	Facile One-Pot Solvothermal Method to Synthesize Sheet-on-Sheet Reduced Graphene Oxide (RGO)/ZnIn ₂ S ₄ Nanocomposites with Superior Photocatalytic Performance. ACS Applied Materials & Date: Acc Ap	8.0	274