
Motoki Ueda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197662/publications.pdf Version: 2024-02-01

MOTOKILLEDA

#	Article	IF	CITATIONS
1	Peptide flat-rod formation by precise arrangement among enantiomeric hydrophobic helices. Journal of Colloid and Interface Science, 2022, 617, 129-135.	9.4	4
2	End-Sealing of Peptide Nanotubes by Cationic Amphiphilic Polypeptides and Their Salt-Responsive Accordion-like Opening and Closing Behavior. Biomacromolecules, 2022, 23, 2785-2792.	5.4	4
3	Etherified pullulan-polyethylenimine based nanoscaffolds improved chemosensitivity of erlotinib on hypoxic cancer cells Carbohydrate Polymers, 2021, 271, 118441.	10.2	7
4	Hypoxia-responsive pullulan-based nanoparticles as erlotinib carriers. International Journal of Biological Macromolecules, 2021, 191, 764-774.	7.5	10
5	Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides. International Journal of Molecular Sciences, 2021, 22, 12075.	4.1	2
6	Stretching of fibroblast cells on micropatterned gelatin on silicone elastomer. Journal of Materials Chemistry B, 2020, 8, 416-425.	5.8	6
7	Solvent Effects on the Self-Assembly of an Amphiphilic Polypeptide Incorporating α-Helical Hydrophobic Blocks. Journal of the American Chemical Society, 2020, 142, 20994-21003.	13.7	34
8	Evasion of the accelerated blood clearance phenomenon by polysarcosine coating of liposomes. Journal of Controlled Release, 2020, 322, 209-216.	9.9	54
9	Tubular Network Formation by Mixing Amphiphilic Polypeptides with Differing Hydrophilic Blocks. Biomacromolecules, 2019, 20, 3908-3914.	5.4	3
10	Enhancement of Binding Affinity of Folate to Its Receptor by Peptide Conjugation. International Journal of Molecular Sciences, 2019, 20, 2152.	4.1	9
11	Optimal therapeutic strategy using antigenâ€containing liposomes selectively delivered to antigenâ€presenting cells. Cancer Science, 2019, 110, 875-887.	3.9	3
12	End-Sealed High Aspect Ratio Hollow Nanotubes Encapsulating an Anticancer Drug: Torpedo-Shaped Peptidic Nanocapsules. ACS Nano, 2019, 13, 305-312.	14.6	30
13	Spontaneous Formation of Gating Lipid Domain in Uniform-Size Peptide Vesicles for Controlled Release. Journal of the American Chemical Society, 2018, 140, 17956-17961.	13.7	29
14	Antibacterial Properties of Silver Nanoparticles Embedded on Polyelectrolyte Hydrogels Based on α-Amino Acid Residues. Gels, 2018, 4, 42.	4.5	12
15	Polymeric Micelle of A3B-Type Lactosome as a Vehicle for Targeting Meningeal Dissemination. Nanomaterials, 2018, 8, 79.	4.1	5
16	Tuning the Viscoelasticity of Peptide Vesicles by Adjusting Hydrophobic Helical Blocks Comprising Amphiphilic Polypeptides. Langmuir, 2017, 33, 5423-5429.	3.5	6
17	Integrated Nanostructures Based on Self-Assembled Amphiphilic Polypeptides. ACS Symposium Series, 2017, , 19-30.	0.5	5
18	Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9

Μοτοκι Ueda

#	Article	IF	CITATIONS
19	Inflammation-induced synergetic enhancement of nanoparticle treatments with DOXIL® and 90Y-Lactosome for orthotopic mammary tumor. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	10
20	High Density of Aligned Nanowire Treated with Polydopamine for Efficient Gene Silencing by siRNA According to Cell Membrane Perturbation. ACS Applied Materials & Interfaces, 2016, 8, 18693-18700.	8.0	26
21	HIV-1 Vpr Abrogates the Effect of TSG101 Overexpression to Support Virus Release. PLoS ONE, 2016, 11, e0163100.	2.5	3
22	Precise control of nanoparticle surface by host–guest chemistry for delivery to tumor. RSC Advances, 2015, 5, 35346-35351.	3.6	6
23	Selective disruption of each part of Janus molecular assemblies by lateral diffusion of stimuli-responsive amphiphilic peptides. Chemical Communications, 2015, 51, 1601-1604.	4.1	18
24	Suppressive immune response of polyâ€(sarcosine) chains in peptideâ€nanosheets in contrast to polymeric micelles. Journal of Peptide Science, 2014, 20, 570-577.	1.4	51
25	Morphology Control between Twisted Ribbon, Helical Ribbon, and Nanotube Self-Assemblies with His-Containing Helical Peptides in Response to pH Change. Langmuir, 2014, 30, 1022-1028.	3.5	47
26	Factors Influencing <i>in Vivo</i> Disposition of Polymeric Micelles on Multiple Administrations. ACS Medicinal Chemistry Letters, 2014, 5, 873-877.	2.8	37
27	Facile and Precise Formation of Unsymmetric Vesicles Using the Helix Dipole, Stereocomplex, and Steric Effects of Peptides. Langmuir, 2014, 30, 4273-4279.	3.5	16
28	Radionuclide therapy using nanoparticle of 131I-Lactosome in combination with percutaneous ethanol injection therapy. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	16
29	Versatile peptide rafts for conjugate morphologies by self-assembling amphiphilic helical peptides. Polymer Journal, 2013, 45, 509-515.	2.7	29
30	Self-Assemblies of Triskelion A ₂ B-Type Amphiphilic Polypeptide Showing pH-Responsive Morphology Transformation. Langmuir, 2012, 28, 6006-6012.	3.5	15
31	Molecular assembly composed of a dendrimer template and block polypeptides through stereocomplex formation. Chemical Communications, 2012, 48, 6181.	4.1	17
32	Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chemical Communications, 2011, 47, 3204.	4.1	65
33	Temperature-Triggered Fusion of Vesicles Composed of Right-Handed and Left-Handed Amphiphilic Helical Peptides. Langmuir, 2011, 27, 4300-4304.	3.5	21
34	Tubulation on peptide vesicles by phase-separation of a binary mixture of amphiphilic right-handed and left-handed helical peptides. Soft Matter, 2011, 7, 4143.	2.7	40
35	Rational design of peptide nanotubes for varying diameters and lengths. Journal of Peptide Science, 2011, 17, 94-99.	1.4	46