
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197568/publications.pdf Version: 2024-02-01



INÃOS COUSO BLANCO

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Statistical reasoning with set-valued information: Ontic vs. epistemic views. International Journal of Approximate Reasoning, 2014, 55, 1502-1518.                                  | 1.9 | 140       |
| 2  | A survey of concepts of independence for imprecise probabilities. Risk, Decision and Policy, 2000, 5, 165-181.                                                                      | 0.1 | 118       |
| 3  | Combining GP operators with SA search to evolve fuzzy rule based classifiers. Information Sciences, 2001, 136, 175-191.                                                             | 4.0 | 113       |
| 4  | Divergence measure between fuzzy sets. International Journal of Approximate Reasoning, 2002, 30,<br>91-105.                                                                         | 1.9 | 105       |
| 5  | Joint propagation of probability and possibility in risk analysis: Towards a formal framework.<br>International Journal of Approximate Reasoning, 2007, 45, 82-105.                 | 1.9 | 94        |
| 6  | Genetic learning of fuzzy rules based on low quality data. Fuzzy Sets and Systems, 2009, 160, 2524-2552.                                                                            | 1.6 | 89        |
| 7  | Higher order models for fuzzy random variables. Fuzzy Sets and Systems, 2008, 159, 237-258.                                                                                         | 1.6 | 73        |
| 8  | Similarity and dissimilarity measures between fuzzy sets: A formal relational study. Information<br>Sciences, 2013, 229, 122-141.                                                   | 4.0 | 71        |
| 9  | Advocating the Use of Imprecisely Observed Data in Genetic Fuzzy Systems. IEEE Transactions on Fuzzy<br>Systems, 2007, 15, 551-562.                                                 | 6.5 | 66        |
| 10 | Rough Sets, Coverings and Incomplete Information. Fundamenta Informaticae, 2011, 108, 223-247.                                                                                      | 0.3 | 62        |
| 11 | On the Variability of the Concept of Variance for Fuzzy Random Variables. IEEE Transactions on Fuzzy<br>Systems, 2009, 17, 1070-1080.                                               | 6.5 | 60        |
| 12 | Generalizing the Wilcoxon rank-sum test for interval data. International Journal of Approximate<br>Reasoning, 2015, 56, 108-121.                                                    | 1.9 | 52        |
| 13 | Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data. International Journal of Approximate Reasoning, 2008, 49, 607-622. | 1.9 | 46        |
| 14 | THE NECESSITY OF THE STRONG α-CUTS OF A FUZZY SET. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2001, 09, 249-262.                                   | 0.9 | 43        |
| 15 | Diagnosis of dyslexia with low quality data with genetic fuzzy systems. International Journal of<br>Approximate Reasoning, 2010, 51, 993-1009.                                      | 1.9 | 43        |
| 16 | Sets of desirable gambles: Conditioning, representation, and precise probabilities. International<br>Journal of Approximate Reasoning, 2011, 52, 1034-1055.                         | 1.9 | 40        |
| 17 | Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning. IEEE Computational<br>Intelligence Magazine, 2019, 14, 31-44.                                        | 3.4 | 40        |
| 18 | Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets and Systems, 2011, 165, 1-23.                                                                          | 1.6 | 39        |

INéS COUSO BLANCO

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables. SpringerBriefs in Applied<br>Sciences and Technology, 2014, , .                                                    | 0.2 | 36        |
| 20 | RELATIONSHIPS BETWEEN POSSIBILITY MEASURES AND NESTED RANDOM SETS. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2002, 10, 1-15.                          | 0.9 | 34        |
| 21 | Random sets as imprecise random variables. Journal of Mathematical Analysis and Applications, 2005, 307, 32-47.                                                                         | 0.5 | 34        |
| 22 | Approximations of upper and lower probabilities by measurable selections. Information Sciences, 2010, 180, 1407-1417.                                                                   | 4.0 | 33        |
| 23 | Lower previsions induced by multi-valued mappings. Journal of Statistical Planning and Inference, 2005, 133, 173-197.                                                                   | 0.4 | 32        |
| 24 | Modeling Vague Data with Genetic Fuzzy Systems under a Combination of Crisp and Imprecise Criteria. ,<br>2007, , .                                                                      |     | 32        |
| 25 | Extreme points of credal sets generated by 2-alternating capacities. International Journal of Approximate Reasoning, 2003, 33, 95-115.                                                  | 1.9 | 30        |
| 26 | Random intervals as a model for imprecise information. Fuzzy Sets and Systems, 2005, 154, 386-412.                                                                                      | 1.6 | 30        |
| 27 | Obtaining linguistic fuzzy rule-based regression models from imprecise data with multiobjective genetic algorithms. Soft Computing, 2009, 13, 467-479.                                  | 2.1 | 30        |
| 28 | Independence concepts in evidence theory. International Journal of Approximate Reasoning, 2010, 51, 748-758.                                                                            | 1.9 | 29        |
| 29 | Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks.<br>Sensors, 2018, 18, 9.                                                                      | 2.1 | 29        |
| 30 | A random set characterization of possibility measures. Information Sciences, 2004, 168, 51-75.                                                                                          | 4.0 | 27        |
| 31 | A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4 batteries. Applied Soft Computing Journal, 2014, 14, 269-288.                    | 4.1 | 26        |
| 32 | Extending a simple genetic cooperative-competitive learning fuzzy classifier to low quality datasets.<br>Evolutionary Intelligence, 2009, 2, 73-84.                                     | 2.3 | 25        |
| 33 | An extension of the FURIA classification algorithm to low quality data through fuzzy rankings and its application to the early diagnosis of dyslexia. Neurocomputing, 2016, 176, 60-71. | 3.5 | 24        |
| 34 | Ranking of fuzzy intervals seen through the imprecise probabilistic lens. Fuzzy Sets and Systems, 2015, 278, 20-39.                                                                     | 1.6 | 23        |
| 35 | From Fuzzy Sets to Interval-Valued and Atanassov Intuitionistic Fuzzy Sets: A Unified View of Different<br>Axiomatic Measures. IEEE Transactions on Fuzzy Systems, 2019, 27, 362-371.   | 6.5 | 22        |
| 36 | Imprecise distribution function associated to a random set. Information Sciences, 2004, 159, 109-123.                                                                                   | 4.0 | 20        |

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Health assessment of LFP automotive batteries using a fractional-order neural network.<br>Neurocomputing, 2020, 391, 345-354.                                                   | 3.5 | 20        |
| 38 | Stochastic convergence, uniform integrability and convergence in mean on fuzzy measure spaces.<br>Fuzzy Sets and Systems, 2002, 129, 95-104.                                    | 1.6 | 18        |
| 39 | Fuzzy Î'–ε-partitions. Information Sciences, 2003, 152, 267-285.                                                                                                                | 4.0 | 18        |
| 40 | Linguistic cost-sensitive learning of genetic fuzzy classifiers for imprecise data. International Journal of Approximate Reasoning, 2011, 52, 841-862.                          | 1.9 | 18        |
| 41 | Machine learning models, epistemic set-valued data and generalized loss functions: An encompassing approach. Information Sciences, 2016, 358-359, 129-150.                      | 4.0 | 18        |
| 42 | Kendall's rank correlation on quantized data: An interval-valued approach. Fuzzy Sets and Systems, 2018, 343, 50-64.                                                            | 1.6 | 18        |
| 43 | A general framework for maximizing likelihood under incomplete data. International Journal of Approximate Reasoning, 2018, 93, 238-260.                                         | 1.9 | 17        |
| 44 | Fuzzy random variables-based modeling with GA-P algorithms. , 2000, , 245-256.                                                                                                  |     | 17        |
| 45 | Mark-recapture techniques in statistical tests for imprecise data. International Journal of<br>Approximate Reasoning, 2011, 52, 240-260.                                        | 1.9 | 14        |
| 46 | Sequential pattern mining applied to aeroengine condition monitoring with uncertain health data.<br>Engineering Applications of Artificial Intelligence, 2015, 44, 10-24.       | 4.3 | 14        |
| 47 | Additive similarity and dissimilarity measures. Fuzzy Sets and Systems, 2017, 322, 35-53.                                                                                       | 1.6 | 14        |
| 48 | A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling.<br>Engineering Applications of Artificial Intelligence, 2017, 64, 367-377. | 4.3 | 14        |
| 49 | One-to-one correspondences between -partitions, -equivalences and -pseudometrics. Fuzzy Sets and Systems, 2001, 124, 87-95.                                                     | 1.6 | 12        |
| 50 | Width-Based Interval-Valued Distances and Fuzzy Entropies. IEEE Access, 2019, 7, 14044-14057.                                                                                   | 2.6 | 12        |
| 51 | A Multiobjective Genetic Fuzzy System with Imprecise Probability Fitness for Vague Data. , 2006, , .                                                                            |     | 10        |
| 52 | A Model-Based Virtual Sensor for Condition Monitoring of Li-Ion Batteries in Cyber-Physical Vehicle<br>Systems. Journal of Sensors, 2017, 2017, 1-12.                           | 0.6 | 10        |
| 53 | Similarity measures, penalty functions, and fuzzy entropy from new fuzzy subsethood measures.<br>International Journal of Intelligent Systems, 2019, 34, 1281-1302.             | 3.3 | 10        |
|    |                                                                                                                                                                                 |     |           |

54 Engine Health Monitoring for engine fleets using fuzzy radviz. , 2013, , .

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | AN AXIOMATIC DEFINITION OF FUZZY DIVERGENCE MEASURES. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2008, 16, 1-17.                                                                                     | 0.9 | 8         |
| 56 | Equalizing imbalanced imprecise datasets for genetic fuzzy classifiers. International Journal of<br>Computational Intelligence Systems, 2012, 5, 276-296.                                                                             | 1.6 | 8         |
| 57 | Bootstrap analysis of multiple repetitions of experiments using an interval-valued multiple comparison procedure. Journal of Computer and System Sciences, 2014, 80, 88-100.                                                          | 0.9 | 8         |
| 58 | Finding informative code metrics under uncertainty for predicting the pass rate of online courses.<br>Information Sciences, 2016, 373, 42-56.                                                                                         | 4.0 | 8         |
| 59 | Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants. Lecture Notes in Computer Science, 2019, , 266-279.                                                                                                 | 1.0 | 8         |
| 60 | Some Results about Mutual Information-based Feature Selection and Fuzzy Discretization of Vague<br>Data. IEEE International Conference on Fuzzy Systems, 2007, , .                                                                    | 0.0 | 7         |
| 61 | The behavioral meaning of the median. Information Sciences, 2015, 294, 127-138.                                                                                                                                                       | 4.0 | 7         |
| 62 | Defuzzification of Fuzzy p-Values. Advances in Soft Computing, 2008, , 126-132.                                                                                                                                                       | 0.4 | 7         |
| 63 | Second order possibility measure induced by a fuzzy random variable. Studies in Fuzziness and Soft Computing, 2002, , 127-144.                                                                                                        | 0.6 | 6         |
| 64 | Inner and outer fuzzy approximations of confidence intervals. Fuzzy Sets and Systems, 2011, 184, 68-83.                                                                                                                               | 1.6 | 6         |
| 65 | Online SOC Estimation of Li-FePO4 Batteries through a New Fuzzy Rule-Based Recursive Filter with<br>Feedback of the Heat Flow Rate. , 2014, , .                                                                                       |     | 6         |
| 66 | Three Categories of Set-Valued Generalizations From Fuzzy Sets to Interval-Valued and Atanassov<br>Intuitionistic Fuzzy Sets. IEEE Transactions on Fuzzy Systems, 2018, 26, 3112-3121.                                                | 6.5 | 6         |
| 67 | Semi-Supervised Recurrent Variational Autoencoder Approach for Visual Diagnosis of Atrial<br>Fibrillation. IEEE Access, 2021, 9, 40227-40239.                                                                                         | 2.6 | 6         |
| 68 | A Possibilistic Interpretation of the Expectation of a Fuzzy Random Variable. , 2004, , 133-140.                                                                                                                                      |     | 5         |
| 69 | Preprocessing vague imbalanced datasets and its use in genetic fuzzy classifiers. , 2010, , .                                                                                                                                         |     | 5         |
| 70 | COMBINING ADABOOST WITH PREPROCESSING ALGORITHMS FOR EXTRACTING FUZZY RULES FROM LOW<br>QUALITY DATA IN POSSIBLY IMBALANCED PROBLEMS. International Journal of Uncertainty, Fuzziness and<br>Knowlege-Based Systems, 2012, 20, 51-71. | 0.9 | 4         |
| 71 | An Imprecise Probability Approach to Joint Extensions of Stochastic and Interval Orderings.<br>Communications in Computer and Information Science, 2012, , 388-399.                                                                   | 0.4 | 4         |
| 72 | Maximum Likelihood Under Incomplete Information: Toward a Comparison of Criteria. Advances in<br>Intelligent Systems and Computing, 2017, , 141-148.                                                                                  | 0.5 | 4         |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A framework for learning fuzzy rule-based models with epistemic set-valued data and generalized loss functions. International Journal of Approximate Reasoning, 2018, 92, 321-339.                                                                    | 1.9 | 4         |
| 74 | A note on "Similarity and dissimilarity measures between fuzzy sets: A formal relational study―and<br>"Additive similarity and dissimilarity measures― Fuzzy Sets and Systems, 2020, 390, 183-187.                                                    | 1.6 | 4         |
| 75 | The Behavioral Meaning of the Median. Advances in Intelligent and Soft Computing, 2010, , 115-122.                                                                                                                                                    | 0.2 | 4         |
| 76 | An Extension of the FURIA Classification Algorithm to Low Quality Data. Lecture Notes in Computer Science, 2013, , 679-688.                                                                                                                           | 1.0 | 4         |
| 77 | A perspective on the extension of stochastic orderings to fuzzy random variables. , 0, , .                                                                                                                                                            |     | 4         |
| 78 | Obtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels. Soft Computing, 2011, 15, 1945-1957.                                                                             | 2.1 | 3         |
| 79 | Singular spectral analysis of ill-known signals and its application to predictive maintenance of windmills with SCADA records. Soft Computing, 2012, 16, 755-768.                                                                                     | 2.1 | 3         |
| 80 | A methodology for exploiting the tolerance for imprecision in genetic fuzzy systems and its<br>application to characterization of rotor blade leading edge materials. Mechanical Systems and Signal<br>Processing, 2013, 37, 76-91.                   | 4.4 | 3         |
| 81 | Aeroengine prognosis through genetic distal learning applied to uncertain Engine Health Monitoring data. , 2014, , .                                                                                                                                  |     | 3         |
| 82 | Maximum Likelihood Estimation and Coarse Data. Lecture Notes in Computer Science, 2017, , 3-16.                                                                                                                                                       | 1.0 | 3         |
| 83 | A Minimum-Risk Genetic Fuzzy Classifier Based on Low Quality Data. Lecture Notes in Computer Science, 2009, , 654-661.                                                                                                                                | 1.0 | 3         |
| 84 | Guest editorial: special issue on "knowledge extraction from low quality data: theoretical,<br>methodological and practical issues― Soft Computing, 2012, 16, 739-740.                                                                                | 2.1 | 2         |
| 85 | CI-LQD: A software tool for modeling and decision making with Low Quality Data. , 2013, , .                                                                                                                                                           |     | 2         |
| 86 | Battery diagnosis for electrical vehicles through semi-physical fuzzy models. , 2016, , .                                                                                                                                                             |     | 2         |
| 87 | The Null Space of Fuzzy Inclusion Measures. IEEE Transactions on Fuzzy Systems, 2021, 29, 641-648.                                                                                                                                                    | 6.5 | 2         |
| 88 | Selecting the Most Informative Inputs in Modelling Problems with Vague Data Applied to the Search of<br>Informative Code Metrics for Continuous Assessment in Computer Science Online Courses. Lecture<br>Notes in Computer Science, 2014, , 299-308. | 1.0 | 2         |
| 89 | Belief Revision and the EM Algorithm. Communications in Computer and Information Science, 2016, , 279-290.                                                                                                                                            | 0.4 | 2         |
| 90 | Graphical Analysis of the Progression of Atrial Arrhythmia Using Recurrent Neural Networks.<br>International Journal of Computational Intelligence Systems, 2020, 13, 1567.                                                                           | 1.6 | 2         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Preference Relations and Families of Probabilities: Different Sides of the Same Coin. Communications in Computer and Information Science, 2014, , 1-9.                                                                   | 0.4 | 2         |
| 92  | Using the Adaboost algorithm for extracting fuzzy rules from low quality data: Some preliminary results. , 2011, , .                                                                                                     |     | 1         |
| 93  | Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges. ,<br>2013, , .                                                                                                         |     | 1         |
| 94  | A Procedure for Extending Input Selection Algorithms to Low Quality Data in Modelling Problems<br>with Application to the Automatic Grading of Uploaded Assignments. Scientific World Journal, The,<br>2014, 2014, 1-11. | 0.8 | 1         |
| 95  | Rejoinder on "Statistical reasoning with set-valued information: Ontic vs. epistemic viewsâ€:<br>International Journal of Approximate Reasoning, 2014, 55, 1606-1608.                                                    | 1.9 | 1         |
| 96  | The notion of roughness of a fuzzy set. Fuzzy Sets and Systems, 2014, 249, 114-127.                                                                                                                                      | 1.6 | 1         |
| 97  | Health Assessment of Automotive Batteries Through Computational Intelligence-Based Soft Sensors:<br>An Empirical Study. Advances in Intelligent Systems and Computing, 2018, , 47-56.                                    | 0.5 | 1         |
| 98  | Distances between Interval-valued Fuzzy Sets Taking into Account the Width of the Intervals. , 2019, , .                                                                                                                 |     | 1         |
| 99  | A Unified View of Different Axiomatic Measures Defined on \$L\$-Fuzzy Sets. IEEE Transactions on Fuzzy<br>Systems, 2020, 28, 1878-1886.                                                                                  | 6.5 | 1         |
| 100 | Distal learning of the incremental capacity curve of a LiFePO4 battery. Logic Journal of the IGPL, 2020, ,                                                                                                               | 1.3 | 1         |
| 101 | Identification of Li-ion battery models through monotonic echo serial networks for coarse data.<br>Logic Journal of the IGPL, 2020, 28, 109-120.                                                                         | 1.3 | 1         |
| 102 | Analysis of Students' Online Interactions in the Covid Era from the Perspective ofÂAnomaly Detection.<br>Advances in Intelligent Systems and Computing, 2022, , 305-314.                                                 | 0.5 | 1         |
| 103 | A Minimum Risk Wrapper Algorithm for Genetically Selecting Imprecisely Observed Features, Applied to the Early Diagnosis of Dyslexia. Lecture Notes in Computer Science, 2008, , 608-615.                                | 1.0 | 1         |
| 104 | Upper Probabilities Attainable by Distributions of Measurable Selections. Lecture Notes in Computer Science, 2009, , 335-346.                                                                                            | 1.0 | 1         |
| 105 | Expected Pair-Wise Comparison of the Outcomes of a Fuzzy Random Variable. Advances in Intelligent and Soft Computing, 2010, , 105-113.                                                                                   | 0.2 | 1         |
| 106 | Random Sets as Ill-Perceived Random Variables. SpringerBriefs in Applied Sciences and Technology, 2014, , 7-45.                                                                                                          | 0.2 | 1         |
| 107 | Generalized stochastic orderings applied to the study of performance of machine learning algorithms for low quality data. , 0, , .                                                                                       |     | 1         |
| 108 | The minimum variance of a random set on a Euclidean space. Fuzzy Sets and Systems, 2022, 443, 106-126.                                                                                                                   | 1.6 | 1         |

INéS COUSO BLANCO

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Obtaining a Linguistically Understandable Random Sets-Based Classifier from Interval-Valued Data with Genetic Algorithms. , 2009, , .                                                                             |     | 0         |
| 110 | Managing stochastic algorithms cross-validation variability using an interval valued multiple comparison procedure. , 2011, , .                                                                                   |     | 0         |
| 111 | Random Fuzzy Sets as Ill-Perceived Random Variables. SpringerBriefs in Applied Sciences and Technology, 2014, , 47-88.                                                                                            | 0.2 | 0         |
| 112 | Online SOC estimation of Li-FePO <inf>4</inf> batteries through an observer of the system state with minimal nonspecificity. , 2015, , .                                                                          |     | 0         |
| 113 | Online Estimation of the State of Health of a Rechargeable Battery Through Distal Learning of a Fuzzy<br>Model. Advances in Intelligent Systems and Computing, 2020, , 68-77.                                     | 0.5 | 0         |
| 114 | GFS-Based Analysis of Vague Databases in High Performance Athletics. Lecture Notes in Computer<br>Science, 2009, , 602-609.                                                                                       | 1.0 | 0         |
| 115 | Peakedness and Generalized Entropy for Continuous Density Functions. Lecture Notes in Computer Science, 2010, , 208-219.                                                                                          | 1.0 | 0         |
| 116 | Graphical Exploratory Analysis of Educational Knowledge Surveys with Missing and Conflictive Answers Using Evolutionary Techniques. Lecture Notes in Computer Science, 2010, , 45-52.                             | 1.0 | 0         |
| 117 | Measurement of Ground-Neutral Currents in Three Phase Transformers Using a Genetically Evolved Shaping Filter. Communications in Computer and Information Science, 2010, , 731-740.                               | 0.4 | 0         |
| 118 | Comparing Interval-Valued Estimations with Point-Valued Estimations. Communications in Computer and Information Science, 2016, , 595-604.                                                                         | 0.4 | 0         |
| 119 | Practical Notes on Applying Generalised Stochastic Orderings to the Study of Performance of<br>Classification Algorithms for Low Quality Data. Advances in Intelligent Systems and Computing, 2018, ,<br>586-599. | 0.5 | 0         |
| 120 | Graphical Exploratory Analysis of Fuzzy Data as a Teaching Tool. Studies in Systems, Decision and<br>Control, 2018, , 565-574.                                                                                    | 0.8 | 0         |
| 121 | Graphical analysis of the progression of atrial arrhythmia through an ensemble of Generative<br>Adversarial Network Discriminators. , 0, , .                                                                      |     | 0         |
| 122 | Health Monitoring of Automotive Batteries in Fast-Charging Conditions Through a Fuzzy Model of the<br>Incremental Capacity. Studies in Computational Intelligence, 2020, , 155-164.                               | 0.7 | 0         |