
Anne-Cécile Roger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197427/publications.pdf Version: 2024-02-01

ANNE-CÃOCHE ROCER

#	Article	IF	CITATIONS
1	Optimization of the continuous coprecipitation in a microfluidic reactor: Cu-based catalysts for CO2 hydrogenation into methanol. Fuel, 2022, 319, 123689.	6.4	1
2	Influence of the Zn/Zr ratio in the support of a copper-based catalyst for the synthesis of methanol from CO2. Catalysis Today, 2021, 369, 95-104.	4.4	17
3	Bimetallic Ni–Ru and Ni–Re Catalysts for Dry Reforming of Methane: Understanding the Synergies of the Selected Promoters. Frontiers in Chemistry, 2021, 9, 694976.	3.6	26
4	Effect of the Support Synthetic Method on the Activity of Ni/CeZrPr Mixed Oxide in the Co-Methanation of CO ₂ /CO Mixtures for Application in Power-to-Gas with Co-Electrolysis. Energy & Fuels, 2021, 35, 13304-13314.	5.1	11
5	Low temperature toluene and phenol abatement as tar model molecules over Ni-based catalysts: Influence of the support and the synthesis method. Applied Catalysis B: Environmental, 2021, 297, 120479.	20.2	20
6	Upgrading syngas from wood gasification through steam reforming of tars over highly active Ni-perovskite catalysts at relatively low temperature. Applied Catalysis B: Environmental, 2021, 299, 120687.	20.2	21
7	Structural impact of carbon nanofibers/few-layer-graphene substrate decorated with Ni for CO2 methanation via inductive heating. Applied Catalysis B: Environmental, 2021, 298, 120589.	20.2	9
8	In Situ DRIFTS-MS Methanol Adsorption Study onto Supported NiSn Nanoparticles: Mechanistic Implications in Methanol Steam Reforming. Nanomaterials, 2021, 11, 3234.	4.1	2
9	Structural, Textural, and Catalytic Properties of Ni-CexZr1â^'xO2 Catalysts for Methane Dry Reforming Prepared by Continuous Synthesis in Supercritical Isopropanol. Energies, 2020, 13, 3728.	3.1	6
10	Modelling the Sintering of Nickel Particles Supported on γ-Alumina under Hydrothermal Conditions. Catalysts, 2020, 10, 1477.	3.5	6
11	Continuous supercritical solvothermal preparation of nanostructured ceria-zirconia as supports for dry methane reforming catalysts. Journal of Supercritical Fluids, 2020, 162, 104855.	3.2	17
12	Dry Reforming of Methane over Ni–Al2O3 and Ni–SiO2 Catalysts: Role of Preparation Methods. Catalysis Letters, 2020, 150, 2180-2199.	2.6	28
13	Tuning the highly dispersed metallic Cu species via manipulating BrÃ,nsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions. Applied Catalysis B: Environmental, 2020, 269, 118804.	20.2	22
14	Detailed Mechanism of Ethanol Transformation into Syngas on Catalysts Based on Mesoporous MgAl2O4 Support Loaded with Ru + Ni/(PrCeZrO or MnCr2O4) Active Components. Topics in Catalysis, 2020, 63, 166-177.	2.8	9
15	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	38.1	610
16	Selective Hydrogenation of Carbon Dioxide into Methanol. Environmental Chemistry for A Sustainable World, 2020, , 111-157.	0.5	3
17	Preparation of highly dispersed supported Ni-Based catalysts and their catalytic performance in low temperature for CO methanation. Carbon Resources Conversion, 2020, 3, 164-172.	5.9	4
18	Role of CeO ₂ -ZrO ₂ Support for Structural, Textural and Functional Properties of Ni-based Catalysts Active in Dry Reforming of Methane. E3S Web of Conferences, 2019, 108, 02018.	0.5	3

#	Article	IF	CITATIONS
19	Carbon dioxide methanation kinetic model on a commercial Ni/Al2O3 catalyst. Journal of CO2 Utilization, 2019, 34, 256-265.	6.8	54
20	An intensification of the CO2 methanation reaction: Effect of carbon nanofiber network on the hydrodynamic, thermal and catalytic properties of reactors filled with open cell foams. Chemical Engineering Science, 2019, 195, 271-280.	3.8	16
21	CO2 Reforming of Methane over LaNiO3 Perovskite Supported Catalysts: Influence of Silica Support. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 568-578.	1.1	7
22	Ni-containing catalysts based on ordered mesoporous MgO–Al2O3for methane dry reforming. Catalysis for Sustainable Energy, 2018, 5, 59-66.	0.7	7
23	Aluminum Open Cell Foams as Efficient Supports for Carbon Dioxide Methanation Catalysts: Pilot cale Reaction Results. Energy Technology, 2017, 5, 2078-2085.	3.8	23
24	The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects ChemCatChem, 2017, 9, 2029-2064.	3.7	2
25	Structured catalysts for biofuels transformation into syngas with active components based on perovskite and spinel oxides supported on Mg-doped alumina. Catalysis Today, 2017, 293-294, 176-185.	4.4	12
26	Kinetic Modelling of Catalytic Reactions in Solid Oxide Cells: Study of Its Coupling with Electrochemistry for Steam and CO ₂ Co-Electrolysis and Steam Reforming. ECS Transactions, 2017, 78, 3129-3138.	0.5	1
27	The French Conference on Catalysis—FCCatâ€1. ChemCatChem, 2017, 9, 2024-2026.	3.7	0
28	Kinetics of Methanol Synthesis from Carbon Dioxide Hydrogenation over Copper–Zinc Oxide Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 13133-13145.	3.7	84
29	The crystal structure of compositionally homogeneous mixed ceria-zirconia oxides by high resolution X-ray and neutron diffraction methods. Open Chemistry, 2017, 15, 438-445.	1.9	7
30	Methane dry reforming over Ni catalysts supported on Ce–Zr oxides prepared by a route involving supercritical fluids. Open Chemistry, 2017, 15, 412-425.	1.9	13
31	Ni-loaded nanocrystalline ceria-zirconia solid solutions prepared via modified Pechini route as stable to coking catalysts of CH4 dry reforming. Open Chemistry, 2016, 14, 363-376.	1.9	23
32	Open cell foam catalysts for CO 2 methanation: Presentation of coating procedures and in situ exothermicity reaction study by infrared thermography. Catalysis Today, 2016, 273, 83-90.	4.4	59
33	Ethanol selective oxidation into syngas over Pt-promoted fluorite-like oxide: SSITKA and pulse microcalorimetry study. Catalysis Today, 2016, 278, 157-163.	4.4	8
34	Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)-Promoted Oxides by FTIRS In Situ. Topics in Catalysis, 2016, 59, 1332-1342.	2.8	14
35	French Catalysis and Much More at FCCatâ€1. ChemCatChem, 2016, 8, 3170-3174.	3.7	0
36	Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper–zinc oxide catalysts with alumina or zirconia supports. Catalysis Today, 2016, 270, 31-42.	4.4	56

Anne-Cécile Roger

#	Article	IF	CITATIONS
37	Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: Application to the preparation of catalysts for methanol synthesis from CO 2 /H 2. Catalysis Today, 2016, 270, 59-67.	4.4	30
38	Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: Design and performance. International Journal of Hydrogen Energy, 2015, 40, 7511-7522.	7.1	26
39	In situ infrared study of formate reactivity on water–gas shift and methanol synthesis catalysts. Comptes Rendus Chimie, 2015, 18, 302-314.	0.5	15
40	Study of CuZnMOx oxides (Mâ€=â€Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol. Comptes Rendus Chimie, 2015, 18, 250-260.	0.5	87
41	Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor. Comptes Rendus Chimie, 2015, 18, 283-292.	0.5	49
42	Structured catalysts for steam/autothermal reforming of biofuels on heat-conducting substrates: Design and performance. Catalysis Today, 2015, 251, 19-27.	4.4	24
43	Partial oxidation of methane to produce syngas over a neodymium–calcium cobaltate-based catalyst. Applied Catalysis A: General, 2015, 489, 140-146.	4.3	49
44	Role of ruthenium on the catalytic properties of CeZr and CeZrCo mixed oxides for glycerol steam reforming reaction toward H2 production. Catalysis Today, 2015, 242, 80-90.	4.4	31
45	Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 2013, 215, 201-207.	4.4	395
46	Ethanol steam reforming over NiLaZr and NiCuLaZr mixed metal oxide catalysts. Catalysis Today, 2013, 213, 42-49.	4.4	32
47	Effect of Physico-Chemical Properties of Ceria-Based Supports on the Carbon Dioxide Methanation Reaction. Advanced Chemistry Letters, 2013, 1, 257-263.	0.1	8
48	Effect of the active metals on the selective H2 production in glycerol steam reforming. Applied Catalysis B: Environmental, 2012, 125, 556-566.	20.2	53
49	Mesoporous amorphous silicate catalysts for biogas reforming. Catalysis Today, 2012, 189, 129-135.	4.4	14
50	Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming. Catalysts, 2012, 2, 121-138.	3.5	12
51	Comparative study of NiLaZr and CoLaZr catalysts for hydrogen production by ethanol steam reforming: Effect of CO2 injection to the gas reactants. Evidence of Rh role as a promoter. Applied Catalysis A: General, 2011, 407, 204-210.	4.3	24
52	Hydrogen production by glycerol steam reforming over CeZrCo fluorite type oxides. Catalysis Today, 2011, 176, 352-356.	4.4	32
53	The influence of the support modification over Ni-based catalysts for dry reforming of methane reaction. Catalysis Today, 2011, 176, 267-271.	4.4	27
54	Ionic liquid protected heteropoly acids for methanol dehydration. Catalysis Today, 2011, 171, 236-241.	4.4	15

Anne-Cécile Roger

#	Article	IF	CITATIONS
55	Study of a CeZrCoRh mixed oxide for hydrogen production by ethanol steam reforming. International Journal of Hydrogen Energy, 2011, 36, 1491-1502.	7.1	21
56	Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1â^'xO2 catalysts for carbon dioxide methanation. Applied Catalysis A: General, 2011, 392, 36-44.	4.3	250
57	Hydrogen production by methanol steam reforming on NiSn/MgO–Al2O3 catalysts: The role of MgO addition. Applied Catalysis A: General, 2011, 392, 184-191.	4.3	97
58	Exhaust gas recirculation for on-board hydrogen production by isooctane reforming: Comparison of performances of metal/ceria–zirconia based catalysts prepared through pseudo sol–gel or impregnation methods. Catalysis Today, 2010, 154, 133-141.	4.4	19
59	CO2 reforming of methane over Ce-Zr-Ni-Me mixed catalysts. Catalysis Today, 2010, 157, 436-439.	4.4	55
60	On-Board Hydrogen Production Through Catalytic Exhaust-Gas Reforming of Isooctane: Efficiency of Mixed Oxide Catalysts Ce2Zr1.5Me0.5O8 (MeÂ=ÂCo, Rh, or Co–Noble Metal). Topics in Catalysis, 2009, 52, 2101-2107.	2.8	16
61	Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol–gel method. Applied Catalysis A: General, 2009, 369, 90-96.	4.3	216
62	Iron–ceria–zirconia fluorite catalysts for methane selective oxidation to formaldehyde. Catalysis Communications, 2009, 10, 1875-1880.	3.3	12
63	Hydrogen production by steam reforming of ethanol. Catalysis Today, 2008, 133-135, 149-153.	4.4	74
64	Comparative study of H2 production by ethanol steam reforming on Ce2Zr1.5Co0.5O8â^`î´ and Ce2Zr1.5Co0.47Rh0.07O8â~`δ: Evidence of the Rh role on the deactivation process. Catalysis Today, 2008, 138, 21-27.	4.4	58
65	Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support. Catalysis Communications, 2008, 9, 864-869.	3.3	34
66	Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catalysis Today, 2006, 113, 187-193.	4.4	175
67	Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bioethanol. Catalysis Today, 2005, 107-108, 417-425.	4.4	99
68	LaCoFeO perovskite oxides as catalysts for Fischer–Tropsch synthesis. Journal of Catalysis, 2005, 235, 279-294.	6.2	51
69	Structure-controlled La-Co-Fe perovskite precursors for higher C2-C4 olefins selectivity in Fischer-Tropsch synthesis. Studies in Surface Science and Catalysis, 2004, 147, 319-324.	1.5	10
70	Co0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer–Tropsch synthesis. Catalysis Today, 2003, 85, 207-218.	4.4	110
71	Role of the Alloy and Spinel in the Catalytic Behavior of Feâ^'Co/Cobalt Magnetite Composites under CO and CO2Hydrogenation. Energy & Fuels, 2002, 16, 1271-1276.	5.1	70
72	Effect of Fischer–Tropsch synthesis on the microstructure of Fe–Co-based metal/spinel composite materials. Applied Catalysis A: General, 2001, 206, 29-42.	4.3	77

#	Article	IF	CITATIONS
73	Fe–Co based metal/spinel to produce light olefins from syngas. Catalysis Today, 2000, 58, 263-269.	4.4	85
74	Control of bulk and surface composition of doped Sm2Sn2O7 pyrochlore. Relation between formation of O-Ba-Cl graftings and C2-selectivity in the oxidative coupling of methane Studies in Surface Science and Catalysis, 1996, 101, 1273-1282.	1.5	3
75	Formation of cubic defined Sm-Sn pyrochlore structures: application to OCM. Catalysis Today, 1994, 21, 341-347.	4.4	15